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Abstract—Sentiment analysis research has focused on using
text for predicting sentiments without considering the unavoid-
able peer influence on user emotions and opinions. The lack of
large-scale ground-truth data on sentiments of users in social
networks has limited research on how predictable sentiments are
from social ties. In this paper, using a large-scale dataset on
human sentiments, we study sentiment prediction within social
networks. We demonstrate that sentiments are predictable using
structural properties of social networks alone. With social science
and psychology literature, we provide evidence on sentiments
being connected to social relationships at four different network
levels, starting from the ego-network level and moving up to
the whole-network level. We discuss emotional signals that can
be captured at each level of social relationships and investigate
the importance of structural features on each network levels.
We demonstrate that sentiment prediction that solely relies on
social network structure can be as (or more) accurate than
text-based techniques. For the situations where complete posts
and friendship information are difficult to get, we analyze the
trade-off between the sentiment prediction performance and the
available information. When computational resources are limited,
we show that using only four network properties, one can predict
sentiments with competitive accuracy. Our findings can be used
to (1) validate the peer influence on user sentiments, (2) improve
classical text-based sentiment prediction methods, (3) enhance
friend recommendation by utilizing sentiments, and (4) help
identify personality traits.

Index Terms—Sentiment Prediction, Social Networks

I. INTRODUCTION

Emotions impact different aspects of our daily lives from

how we make decisions [1] and learn [2] to our overall

health [3]. Social media sites have become the primary online

venue for users to express their emotions via positive and

negative sentiments. Social media users can express sentiments

via blog posts, comments, photos, and likes, among other

interactions. Social relationships are central to the formation of

sentiments [4], [5]. However, the bulk of research on sentiment

prediction has utilized text (in place of network structure) for

predicting sentiments. Recent studies have highlighted emo-

tional contagion among friends [6], indicating the possibility

of using network structure for sentiment prediction. In this

paper, we explore this possibility and investigate sentiment

prediction using social relationships. This investigation allows

us to answer questions such as: Can we predict an individual’s

sentiment based on the sentiments of her friends? Are senti-

ments of users with many friends more predictable? Which

types of social relationships or network structures help best

predict one’s sentiments? We systematically investigate the

utility of network structure for sentiment prediction at four

different network abstraction levels: the ego-level, the triad-

level, the community-level, and the whole network-level. At

each network abstraction level, we capture structural properties

that we speculate can assist in sentiment prediction.

Ego-Level Analysis. At the ego-level, we investigate whether

sentiments expressed by directed (follower/followee) or undi-

rected (friends) connections of a user can help predict her sen-

timents. At this level, we aim to exploit sentiments expressed

by pairs of individuals (i.e., dyads) for prediction purposes.

Triad-level Analysis. At the triad-level, we generalize ego-

level analysis by investigating whether sentiments expressed

by members of the triads (three connected users) that an

individual is a part of can help predict her sentiments. Studying

sentiments in triads raises the possibility of connecting this

study to structural balance [7] and status theory in which triads

with signed edges (e.g., friendly/antagonistic relationships) can

be used for prediction purposes. We investigate this possibility.

Community-Level Analysis. At the community-level, we

explore the possibility of relating one’s sentiments to the

communities that the user has joined and the sentiments

expressed by their members.

Network-Level Analysis. Using the whole-network informa-

tion, we investigate whether structural properties at the macro

(whole network-level) or micro (node-level) level can help

predict one’s sentiment.

At each network-level, we identify (1) structural properties

that help best predict sentiments and (2) how prediction

performance varies as more network information becomes

available. We make the following contributions:

• We provide evidence on how sentiments and network struc-

tural properties are connected at various network levels;

• We demonstrate the feasibility of predicting sentiments by

exploiting various network structures and with different

levels of information availability;

• We assess the importance of structural information at dif-

ferent network levels for sentiment prediction; and

• By comparing network-based with text-based sentiment pre-

diction methods, we identify (1) cases in which each method

performs best and demonstrate (2) the trade-off between

network information and text for sentiment prediction.

The rest of the paper is organized as follows. To follow a

systematic approach, Section II highlights the natural connec-

tions that have been identified between sentiments and social
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ties, mostly within social sciences. These findings inspire

the principal direction of the paper, where we capture the

aforementioned connections via machine learning experiments

outlined in Section III. We review further related work in

Section IV and conclude in Section V with future directions.

II. LINKS BETWEEN SENTIMENTS AND

NETWORK STRUCTURE

Social media websites have become important channels

through which users can develop their social relationships.

Users can befriend or follow other users, and can form

communities or join existing ones. Here, using social science

literature, we provide evidence on sentiments being connected

to social relationships at different network levels. The discus-

sion will mainly focus on the emotional signals that can be

captured at each level of social relationships.

A. Ego Level

Psychological research has provided evidence that individu-

als are happier when they are with others. When asked by the

National Opinion Research Center, “How many close friends

would you say you have?” (excluding family members), 38%

of individuals reporting five or more friends indicated that

they were “very happy” [8]. A recent study corroborates this

finding: having more friends on social networks may enhance

a user’s subjective well-being [9]. Both studies indicate that

friendships have a considerable impact on psychological well-

being. These findings direct us to look at the most basic social

relationship in social networks: friendships, or equivalently,

relationships in an undirected ego-network. Inspired by studies

of emotional contagion among friends [6], we believe that the

degree of happiness among one’s friends may also provide ev-

idence of his expressed sentiments. Similarly, due to the exis-

tence of emotional contagion among followers/followees [10],

we believe that the directed ego-network of follower/followee

relationships may also carry information on one’s sentiments.

B. Triad Level

Consider the following: Emma and Noah are friends and

both positive individuals. Liam is their mutual friend. Is Liam

more likely to be a positive person? Similarly, does Emma and

Noah both being negative lead to Liam also being negative?

A natural extension to predicting sentiments in the ego

network (which often involves two users: ego and a friend) is

to predict sentiments in sets of three connected individuals (a

triad). Network structures involving three nodes have proven

fundamental to understanding social networks, as (1) triads

occur frequently due to transitivity “A friend of my friend is
my friend;” and (2) a closed triad is the simplest complete

graph and network motif, in which every pair of nodes is

connected indicating a close social tie. In large-scale networks

assortativity [11] is a common pattern. We have reason to

believe that users in the same triad may share sentiments.

We can study the connection between social relationships in

triads and user sentiments from different views. From a user’s

view, if a user is part of many triads with two other positive

users, we speculate that the user is more likely to be positive.

From the view of a triad, if two members are positive, we may

expect the third one to be positive as well.

Similar to structural balance and social status theory, we

can consider all the possible ways in which the three users

in a triangle can be signed. Differing from these theories,

we assign signs to nodes with user sentiments, but not to

edges. We speculate that (1) specific configurations of triads

are more frequent with respect to the sentiments of their

members and that (2) sentiments of individuals that are in

such configurations are easier to predict.

Here, we consider triads as the most basic network motif.

However, our approach can be extended to higher-order struc-

tures or motifs that involve more nodes.

C. Community Level

In social networks, a community is formed when like-

minded users become friends and start interacting with each

other [11]. Naturally, we speculate users in the same commu-

nity express similar sentiments. We can hypothesize that the

user sentiments is influenced by the most positive or negative

users in the community, or the overall community sentiment.

On the contrary, we can speculate that users prefer joining

communities whose members express similar sentiments.

D. Network Level

Connecting structural properties at the whole-network level

with user attributes (including sentiments) is a topic less

explored. However, the importance of network-level structure

should not be ignored, as it is the only level that provides

a global view of the network. At this level, we are not

only considering one’s friendships, but are also including

information from friends of friends, three-hop connections,

and even the connectivity at the whole-network level. We

analyze the network-level structure from a (1) macro view,

where the network is formed by linked users with different

sentiments. If the way users choose to befriend or follow

others is related to their sentiments, we should be able to

observe it from this macro view; (2) micro view, where

each user is embedded in the network differently. Consider

a node embedding method [12] that maps nodes into a lower

dimensional space. If sentiments are connected to the structural

properties of the whole network, a node embedding that pre-

serves structural similarity should result in similar embeddings

for nodes expressing similar sentiments.

III. SENTIMENT PREDICTION USING

NETWORK STRUCTURE

Our approach to sentiment prediction using social net-

works aims to identify structural properties that are related

to sentiments. Hence, we start by constructing features on

each network level that we speculate can help with senti-

ment prediction. Following feature construction, we conduct

experiments to assess the importance of each network level

and the validity of our speculations. Finally, we assess the

predictive power of using all features. Before we delve into

our experiments, we briefly discuss the dataset we use for the

experiments in this paper.
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A. Experimental Setup

To predict sentiments using network structure, we require

data that contains social network information for users as

well as their sentiments. As sentiment classification can be

subjective and imprecise, exact ground-truth sentiments are

preferred. For network information, there is a need for (1)

directed and undirected relationships between users and (2)

user community memberships. It is preferable that explicit

community membership information is provided, as com-

munity detection can be subjective [13]. Finally, to com-

pare network-based sentiment prediction with text-based tech-

niques, the data should contain user-generated text such as

posts [14]. In our previous study on emotions within social

networks [15], we have crawled one such dataset from social

networking/blogging site LiveJournal (http://livejournal.com/).

Users on LiveJournal can maintain a blog and can have (1)

friends (undirected/mutual relationships), (2) directed relation-

ships (follower/following) and be in (3) explicit communities

(create or join a community). When users post, they have the

option of reporting their sentiment by selecting a mood, which

can be selected from a predefined alphabetically-ordered list

of 132 common moods such as happy or angry, or can

be entered as free-text. Our dataset contains 10 years of

LiveJournal data, including 14,767,000 posts, where each post

includes the sentiment directly provided by the user, 1,135,000

friendships, 14,196,000 million follower/followee relations,

and the community memberships for all users. The data is

publicly available at https://data.syr.edu/get/EmotionPatterns/

Data Preprocessing. We preprocess the dataset by

• Retaining the posts that have their moods selected from

the predefined list provided by LiveJournal. This allows

consistency in sentiment analysis and removes meme-

type moods. Predefined mood posts account for the

majority (85.96%) of posts within our data;

• Excluding infrequent or inactive users by removing users

that have fewer than 10 posts; and

• Manually labeling each mood with its polarity

(positive, negative, or neutral). After this

step, all moods in the datasets are either positive (+),

negative (−), or neutral (0).

After data preprocessing, we use the previously proposed

Subjective Well-Being (SWB) [16] to quantify the sentiments

of users. SWB is defined as the fractional difference between

the number of positive and negative posts:

S(u) =
Np(u)−Nn(u)

Np(u) +Nn(u)
, (1)

where S(u) denote the subjective well-being of user u, and

Np(u) and Nn(u) represent the number of positive and

negative posts for user u, respectively. In our dataset, the SWB

distribution is approximately normal, which can be observed

by the normal fit in Figure 1a. The empirical cumulative

distribution function (CDF) of the S(u) values (Figure 1b)

indicates a slight skew towards users with more negative posts,

i.e., P (S(u) < 0) > 0.5. Hence, we consider users with
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Fig. 1: User Sentiment Distribution

TABLE I: Positive, Negative, and Neutral Users Distribution

Users Number Proportion
Positive (+) 50,705 43.92%
Negative (−) 61,066 52.90%
Neutral (0) 3,673 3.18%
Total 115,444 100.00%

S(u) > 0 as positive (+) users, with S(u) < 0 as negative

(−) users, and with S(u) = 0 as neutral (0) individuals.

Table I provides the distribution of users with positive,

negative, and neutral sentiments. The majority of users express

negative sentiments and negative users are almost 20% higher

than positive users. Since neutral users account for only 3% of

the population, we remove them from the network and predict

sentiments for users that are either positive or negative. Among

the remaining users, there are 37 users (21 are positive and 16

are negative) that are not in friendship or follower/followee

networks. We also remove these users as they do not carry

link information for prediction.

After data preparation, we construct features for prediction.

Table II provides our feature set on four network levels:

Ego-level, Triad-level, Community-level, and Whole-Network

Level. Following feature construction, we assess the effective-

ness of network features via the following experiments. In

our experiments, we use 10-fold cross validation and logistic

regression as our classifier. Finally, we compare our approach

with text-based methods, and discuss the trade-off between

network information and text.

B. Ego level

We conduct experiments at the ego-level by investigating

both undirected and directed ego-networks.
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TABLE II: Feature List

Ego-Level
(undirected)

# of friends
# of positive friends
# of negative friends

Ego-Level
(directed)

# of followers
# of followees
# of positive followers
# of negative followers
# of positive followees
# of negative followees

Triad-Level
(undirected)

# of (+,+) pairs
# of (+,−) pairs
# of (−,−) pairs

Triad-Level
(directed)

# of (+,+) pairs in non-rotatable triad
# of (+,−) pairs in non-rotatable triad
# of (−,−) pairs in non-rotatable triad
# of (+,+) pairs in rotatable triad
# of (+,−) pairs in rotatable triad
# of (−,−) pairs in rotatable triad
Count of 16 positions

Community-Level

# of communities
# of positive communities
# of negative communities
Fraction of positive communities
Average SWB of the communities
Maximum SWB of the communities Cmax

Minimum SWB of the communities Cmin

Network-Level
Kronecker Features
Unweighted NODE2VEC

Weighted NODE2VEC

Undirected Ego Networks. We speculated that the number of

friends and the degree of happiness of friends may help predict

one’s sentiments. The number of friends of a user is simply

the user’s degree in the friendship graph, which we include

as one feature. To quantify the degree of happiness among

the friends, we include the number of positive friends and

number of negative friends as two features. With these three

features, the prediction accuracy is about 56%. Intuitively,

the prediction accuracy must differ for users with a different

number of friends, as more structural information becomes

available. To verify this speculation, we plot the accuracy and

the area-under-the-curve (AUC) for users that have k or more

friends in Figure 2. We observe an increasing trend, validating

our speculation. The accuracy reaches 63% for users with more

than 150 friends. As users with more than 150 friends take up

only 1% of our data, we do not study users with more friends.

Directed Ego Networks. We extend our study to directed

networks where follower/followee types of edges are present.

As edges are directed, we double the features we use for

undirected networks: # of followers, # of positive followers, #

of negative followers, # of users followed, # of positive users

followed, and # of negative users followed. With these six

features, we obtain an accuracy of 59%, and reach an accuracy

of 63% with users following more than 100 users.

C. Triad level

Similar to our ego-level analysis, we study triads in both

undirected and directed networks.

Triads in Undirected Networks. In undirected networks, we

use the sentiments of two friends, to predict the sentiment of

their common friend. For each user, we take all the friendship

triads he or she is in, and we group the other two friends into

three categories based on their sentiments: (+,+), (+,−),
and (−,−). We count the number of friend pairs in each
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Fig. 2: Sentiment Prediction Performance (Accuracy/AUC) for

Users with k or more Friends
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Fig. 3: Sentiment Prediction Performance (Accuracy/AUC) for

Users that are in k or more Undirected Triads

category and include them as three features for the user. We

predict sentiments using only these three features and obtain

an accuracy of 55.34%. As users that participate in more triads

provide more structural information, we plot the accuracy and

AUC for users that participate in k or more triads in Figure

3. We observe that the accuracy and AUC increase, and the

accuracy reaches 69% users in more than 150 triads.

Triads in Directed Networks. For directed networks, we

construct similar features by counting the number of ways

in which two friends of a user can be connected via directed

links (6 features). In directed networks, we can connect our

study to status theory. Status theory is a theory of signed link

formation within social psychology, and it can be summarized

as “If u has a higher status than v and v has a higher status
than w, then u should have a higher status than w.” We

consider all possible (1) edge directions and (2) sentiments

of the other two users, which leads to 16 different positions

a user can take within directed rotatable/non-rotatable triads

(see figures 4a and 4b). Participation in each position may or

may not provide evidence on the sign of a user’s sentiment.

For example, if one speculates that users follow others that

are happier than themselves, then a user is more likely to be

a positive user if he or she appears frequently in the positions

such as P9, P10 and P11. On the contrary, if a user appears

frequently in the positions like P3, P4 and P8, he or she is

more likely to be a negative one. We count the number of

times the user is in each position among all the directed triads

that user is a member of and get 16 features. Table III provides

the accuracy: 56% and the AUC: 52%. The performance does

not improve greatly as the number of triads of which the user

is a member increases. The results show that the predictive

power of these 16+6 = 22 features are limited.
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Fig. 4: Positions in Directed Signed Triads

TABLE III: Accuracy with Directed Features

Minimum Triads # of Users Accuracy AUC
0 111,734 56.24% 52.18%

10 64,280 55.50% 55.45%
50 40,006 54.88% 52.93%
100 29,372 55.94% 52.92%
200 19,641 56.91% 52.28%

D. Community Level

We investigate whether we can predict one’s sentiment using

the sentiments of other community members.

For every community that the user u is in, we calcu-

late the average SWB of the other users and denote it as

the SWB of a community with respect to u, i.e., Su =
1

|C|−1

∑
v∈C−{u} S(v), where C is the community and |C|

is its size. For each user, we include the average, maximum,

and minimum of Su values of all communities that the user

has joined, as features.

Research has shown that happy people have rich and satisfy-

ing social relationships [17], so we take # of communities, # of

positive communities, # of negative communities and fraction

of positive communities as features (from which negative

fractions can be computed), too. With these 7 features, we

predict with an accuracy of 58.17% and an AUC of 57.13%.

E. Network Level

On the Network-Level, to capture a macro view of the

network, we use a generative network model; to obtain a micro

view, a network embedding technique is utilized.

To select a proper generative model for our dataset, we

seek patterns in our dataset that can lead us towards the

appropriate model. Real-world social networks often exhibit

a core-periphery structure[32], where they consist of a dense

cohesive core and a sparse, loosely connected periphery.

Previous studies show that in social networks, generally users

TABLE IV: Prediction Performance with Kronecker Features

Features Accuracy AUC
One-Hop Graph 53.84% 53.90%
Two-Hops Graph 53.02% 53.40%
Graph minus One-Hop 56.20% 48.70%
Combined 55.04% 51.41%

with positive emotions form the core of the network; users

with negative emotions form its periphery [15]. It leads us to

utilize stochastic Kronecker graphs as our generative model.

Kronecker Features. Stochastic Kronecker graph is a genera-

tive model that can capture the core-periphery property of real-

world networks using Kronecker graph product [18]. In brief,

given an adjacency matrix A ∈ R
nk×nk

of a graph, stochastic

Kronecker graph model aims to learn a small probability

matrix P ∈ R
n×n (n between 2-5 typically). This small

matrix is known as the Kronecker initiator matrix, and the kth

Kronecker power of P (i.e., P⊗k = P ⊗ P · · · ⊗ P︸ ︷︷ ︸
k times

) is most

likely to have generated A, i.e., P (A|P ) is maximized (for

further details refer to Ref. [18]). The KRONFIT algorithm

can estimate the Kronecker initiator matrix for a real-world

graph using the maximum likelihood principle in linear time.

Using KRONFIT, we set n equal to 2, and we fit a 2 × 2
initiator matrix I =

[
a b
c d

]
to our graphs. Given a 2 × 2

initiator, one can interpret it as a recursive expansion of

two groups into sub-groups. In a network exhibiting a core-

periphery structure, a represents the core strength and is large;

by contrast, d represents the periphery and is small. In an

undirected network, which has a symmetric adjacency matrix,

the Kronecker initiator is also symmetric, i.e., b = c.
For each user (i.e., node) we select three types of induced

subgraphs: (i) One-Hop (all the nodes that are within one-hop

of the user), (ii) Two-Hops and (iii) the whole graph minus

One-Hop. For each induced subgraph, we estimate a 2 × 2
initiator matrix

[
a b
c d

]
using KRONFIT and use a, b and d

as 3 features. Table IV shows the result with features from

different induced graphs and the combination of all 9 (=3×3)

features. The accuracy varies from 53% to 56%. The predictive

power is limited, and we believe the result can be due to the

following: (1) One-Hop and Two-Hops induced subgraphs are

all generated with the node as the start or center node, which

enhances the core-periphery property even when the node does

not carry much core strength in the original graph; (2) For

the whole graph minus one-hop, our goal was to investigate

whether removing one node and its neighbors will take core

strength away. It appears that this is not the case, and one-

hop’s coverage is small compared to the whole graph.

For a micro view of the network, we use NODE2VEC

as a node embedding technique that utilizes whole-network

information to generate node embeddings.

NODE2VEC Features. NODE2VEC is a framework that learns

a mapping of nodes to a low-dimensional space of features

that maximizes the likelihood of preserving network neigh-

borhoods of nodes [19]. It is based on a biased random walk

procedure for sampling network neighborhoods, and aims to

learn a node embedding that maximizes the log-probability
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TABLE V: Prediction Performance with NODE2VEC Features

NODE2VEC Feature Type Accuracy AUC
Unweighted 56.10% 57.70%
Weighted 60.29% 60.68%
Combined 62.81% 62.59%

TABLE VI: Accuracy with All Features

Minimum # of Friends Accuracy AUC
0 60.24% 57.80%

10 62.06% 60.08%
50 67.40% 64.95%
100 67.84% 66.06%

TABLE VII: Accuracy with Combinations of Four Levels

Combinations Accuracy AUC
All Features 67.11% 64.95%
Ego + Triad 67.16% 65.12%
Ego + Community 59.46% 56.77%
Ego + Network 59.51% 56.92%
Triad + Community 67.79% 65.64%
Triad + Network 67.99% 66.31%
Community + Network 61.17% 59.97%
Ego + Triad + Community 67.06% 64.88%
Ego + Triad + Network 67.45% 65.35%
Ego + Community + Network 59.51% 56.90%
Triad + Community + Network 67.50% 65.34%

of the observations. One can choose the dimensionality of the

feature space by parameter d, and adjust the sampling strategy

with parameter parameters p and q. We apply the algorithm

on our friendship network with d = 128, p = q = 0.25. Thus

for each node, we can get 128 features from NODE2VEC.

NODE2VEC supports weighted graphs too. The weights are

applied to the sampling strategy only. In our case, the edge

weight can be the tie strength of two users, which is related

to the sentiment of the users. A previous study of core-

periphery property [20] shows that if one can denote the

levels of coreness for both nodes i and j as values between

0 to 1, then the product of their coreness can quantify their

tie strength. Thus, we use the previously proposed emotional
coreness and set emotional tie-strength [15] as the weights.

Emotional coreness for user u is defined as eu = (S(u)+1)/2,

which is a bijection that rescales SWB of a user from [−1, 1]
to [0, 1], maintains its ordering, and still follows the same

normal distribution. After this mapping, emotional coreness

of negative users lies in [0, 0.5) and that of positive users

is in (0.5, 1]. Once emotional coreness is computed, we can

compute emotional tie-strength eij between users i and j as

eij = ei · ej . Note that although we use the user SWB in the

model, it is only used in the sampling strategy and does not

leak user sentiment information via learned features.

Table V provides the prediction results using NODE2VEC

features for unweighted and weighted graphs, and the com-

bination of these features. The features learned from the

unweighted graph can reach an accuracy of 56% and an

AUC of 57%, and features from weighted graph can reach

an accuracy and AUC of about 60%. Combined features can

achieve an accuracy and AUC of approximately 62%.

TABLE VIII: Top 4 Selected Features via Logistic Regression

Feature # Feature
1 # of positive followers
2 # of negative followers
3 # of (−,−) pairs (undirected)
4 # of (+,−) pairs (undirected)

TABLE IX: Choice of Features for Sentiment Prediction

Minimum # of Friends Accuracy AUC
0 57.97% 54.80%

10 61.55% 58.98%
50 67.16% 64.71%
100 69.19% 67.03%
200 70.00% 67.14%
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Fig. 5: Performance Improvement with All Features with

respect to the Number of Friends

F. Combining All Network Levels

We combine features corresponding to all network levels for

sentiment prediction. Combining all the (3+6+9+6+16+7+
9+128+128 = 306) features, we obtain the prediction results

in Table VI. The accuracy is 60.24%. The accuracy increases

with the minimum number of friends a user has, and reaches

about 67% for those with more than 50 friends. In fact, a

logistic S-curve, f(x) = 4.054/(5.874 + e−0.03696x), fits the

plot in Figure 5 with R2 = 0.92. For users with more than 50

friends, we also obtain the accuracy with combinations of the

four levels of features in Table VII. The results indicate that

the combinations including Triad-level features outperform.

G. Choice of Features and Learning Algorithms

In this section, we identify most informative features for

sentiment prediction and assess the impact that our choice of

classifier had on our experimental results.

Informative Features. Our goal here is to identify features

that are (1) easy to generate and (2) informative for sentiment

prediction. Hence, we do not consider network level features,

as they are extremely time-consuming to generate and hard

to interpret. Most informative features can be identified by

standard feature selection techniques such as Information

Gain, χ2, among others. Here, we use logistic regression

coefficients for feature importance analysis and ranking the

remaining 41 structural features. Table VIII shows the top four

features and Table IX shows the prediction result using only

these features. We observe that the performance using features

selected in terms of accuracy/AUC is very close to the result

by using all the features. The performance is especially close

for users with more than 50 or 100 friends, where predictions

can be up to 69% accurate.
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Fig. 6: Change in Prediction Performance Surface with Addi-

tional Information (Posts/Friends)

TABLE X: Choice of Learners for Sentiment Prediction

Naive Bayes SVM
Minimum # of Friends Accuracy AUC Accuracy AUC

0 59.31% 57.27% 58.96% 57.41%
10 54.30% 56.94% 57.00% 53.28%
50 55.83% 57.91% 56.18% 50.02%
100 53.37% 56.30% 57.03% 50.00%
200 53.33% 53.61% 60.00% 50.00%

Choice of Learning Algorithm. In our experiments we used

logistic regression for sentiment prediction. For evaluating the

learning bias, we compared our performance with some basic

learning algorithms such as Naive Bayes and the SVM. These

classifiers have different learning biases, and we expect to

observe different performances for the sentiment prediction

task. Table X provides the prediction results. As seen in the

table, results are not significantly different among these meth-

ods. This observation indicates that when sufficient network

information is available in features, sentiment prediction using

structural features is reasonably accurate and not sensitive to

the choice of learning algorithm. Overall, logistic regression

performs slightly better, especially for users with more friends.

H. Comparison with Text-based Methods

We compare sentiment prediction based on network struc-

ture with text-based sentiment prediction methods. We

choose Stanford CoreNLP sentiment [21] as a representative

text-based sentiment prediction tool. Stanford CoreNLP is

based on Recursive Neural Tensor Networks and the Stan-

ford Sentiment Treebank. It classifies every sentence into

five sentiment classes: {Very negative, Negative,
Neutral, Positive, Very positive}. We repre-

TABLE XI: Accuracy with Text-based Methods

Minimum # of Posts Accuracy AUC
10 54.99% 57.05%
50 55.57% 58.44%

100 56.92% 60.37%
200 56.08% 61.41%

sent these five classes as sentiment scores {-2, -1, 0, 1, 2}.
For each post, we average the sentiment scores of all the

sentences in the post. If this average value is greater than

0 (i.e., above Neutral), we consider the post positive; If it

is less than 0, we consider the post as negative; Finally, if it

is zero, we denote the post as a neutral post. After assigning

sentiments to posts, we calculate the new (text-based) SWB

of each user to predict the user’s general sentiments. As the

sentiment classification method is computationally expensive,

we sampled 1,700 users with about 350,000 posts as the

test data. Table XI provides the accuracy rates, indicating an

accuracy rate of around 55%. We notice that as the minimum

number of posts that a user has increases, the accuracy and

AUC slightly increase.

Network Information versus Text Trade-off. Previous ex-

periments demonstrate that sentiment prediction performance

is closely related to the amount of data available, i.e., number

of friends for prediction using network structure and number

of posts for prediction using text. However, in reality, it is not

straightforward to obtain one’s complete posts and friendship

information due to limitations imposed by site APIs or other

privacy concerns. Hence, in this section, we analyze the trade-

off between the sentiment prediction performance and the

information that is available. We model prediction accuracy

ACC as a function g(., .) of the number of friends and

the number of posts that we have available for a user, i.e.
ACC = g(p, f), where ACC is the accuracy, p is the number

of posts, and f is the number of friends. We ask the following

question: given a user with p posts and f friends, what is

the accuracy gain that we can expect by having Δp more of

her posts or Δf more of her friends? To determine this gain,

we should look at
g(p+Δp,f)−g(p,f)

Δp and
g(p,f+Δf)−g(p,f)

Δf , and

when Δp→ 0 and Δf → 0, they turn into partial derivatives

of the accuracy surface with respect to friends and posts: ∂g
∂p

and ∂g
∂f . For instance, if both partial derivatives are positive

at point (x, y), then it means that getting more posts or

friends for users with x posts and y friends will help improve

the accuracy. Figure 6a shows the partial derivatives of the

accuracy surface of the text-based method with respect to the

number of posts. From the figure, we have a few observations:

(1) For users with very few posts and few friends, getting more

posts does not help; (2) For users with many friends and few

posts, more posts can help; (3) For users with many posts,

more posts lead to accuracy gain. Similarly, Figure 6b depicts

the partial derivatives of the accuracy surface of the network-

based method with respect to number of friends on the same

sample dataset. We observe that for users with a few friends

or many friends, more friendship information can improve

the prediction accuracy, while the posts information has very

limited impact. To compare the predictive power of posts and
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Fig. 7: Comparing prediction improvements with more posts

versus more friends. When yellow, additional posts help more

than friends and when blue, friends help more.

friendship information, we should look at the relation between
∂g
∂p and ∂g

∂f at each point (x, y). In Figure 7, the area where
∂g
∂p > ∂g

∂f is yellow, and the area where ∂g
∂p < ∂g

∂f is blue. The

space clearly splits into three parts, which indicates that for

users with few posts or many posts, friendship information is

more useful than getting more posts; on the other hand, for

users with some but not many posts, more posts are preferred.

These findings enable informed decisions under information

collection constraints (e.g., API limits).

IV. ADDITIONAL RELATED WORK

Through our findings, we believe that our methods can be

closely linked to the following areas of research.

I. Sentiment Propagation. Recently, Coviello et al. [6] and

Zafarani et al. [22] have studied emotional contagion and

sentiment propagation in social networks. Here, we do not

have access to causal information on influence or propagation

with respect to sentiments; however, our prediction results may

indicate the existence of such kind of propagations.

II. Signed Networks. Signed networks have been connected

to the classical theory of structural balance and theory of

status [23]. Leskovec et al. [24] have shown that edge signs

are predictable in signed social networks. Specifically, signed

networks have been used to study person-to-person sentiments

and how individuals evaluate others, e.g., friends or foes [25].

Here, we look at nodes in social networks that carry sentiment,

as opposed to edges in previous studies, and predict the sign

of the nodes. Hence, our study complements previous studies.

V. CONCLUSIONS AND DISCUSSION

We have investigated the utility of the social information

at the ego, triad, community, and the whole-network level

for sentiment prediction. Our study shows that using struc-

tural properties alone sentiments are reasonably predictable.

We have identified most informative features, showing that

when computational resources are limited, by using only four

network properties one can predict sentiments with reasonable

accuracy. We compared this approach with text-based methods

and show that it can be as, or more, accurate than text-

based techniques. For the situations where complete posts and

friendship information are difficult to obtain, we analyze the

trade-off between the sentiment prediction performance and

the available information. Our findings can be used for (1) en-

hancing classical sentiment prediction methods that use text or

(2) friend recommendation. Our results show that sentiments

play a significant role in the formation of friendships and

the network, which suggests the possibility of recommending

friends that express similar sentiments.
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