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Abstract—Research on networks is commonly performed using
anonymized network data for various reasons such as protecting
data privacy. Under such circumstances, it is difficult to verify the
source of network data, which leads to questions such as: Given
an anonymized graph, can we identify the network from which it
is collected? Or if one claims the graph is sampled from a certain
network, can we verify it? The intuitive approach is to check for
subgraph isomorphism. However, subgraph isomorphism is NP-
complete; hence, infeasible for most large networks. Inspired by
biometrics studies, we address these challenges by formulating
two new problems: network identification and network authenti-
cation. To tackle these problems, similar to research on human
fingerprints, we introduce two versions of a network identity:
(1) embedding-based identity and (2) distribution-based identity.
We demonstrate the effectiveness of these network identities on
various real-world networks. Using these identities, we propose
two approaches for network identification. One method uses
supervised learning and can achieve an identification accuracy
rate of 94.7%, and the other, which is easier to implement, relies
on distances between identities and achieves an accuracy rate of
85.5%. For network authentication, we propose two methods to
build a network authentication system. The first is a supervised
learner and provides a low false accept rate and the other method
allows one to control the false reject rate with a reasonable false
accept rate across networks. Our study can help identify or verify
the source of network data, validate network-based research, and
be used for network-based biometrics.

Index Terms—Network Identification, Network Authentication,
Network Representation Learning, Network Embedding

I. INTRODUCTION

Networks are all around us, in science (e.g. biological net-
works), engineering (e.g. power grids), and our daily life (e.g.
communication networks), motivating research on networks.
Research on networks is commonly conducted on anonymized
graphs for many reasons such as privacy protection. For exam-
ple, to protect the privacy of users while preserving network
properties, anonymization methods are often used before social
network data is published [1]. To validate the authenticity
of such anonymized graphs, one may ask questions such as:
Given a large graph G, can we verify that it is a Twitter graph
but not collected from Facebook or a biological network?
Can we identify the source of the anonymized graph, i.e.,
its network identity? To answer these questions, a natural
solution is to check if a network (e.g., Twitter) has a subgraph
isomorphic to anonymized G. This requires solving subgraph
isomorphism, which is NP-complete [2], so this solution
is infeasible for most large networks. Hence, we need an
alternative with reasonable accuracy and higher efficiency.

Problem Formulation. In biometrics, there are two types of
systems to identify a person: (1) identification systems and (2)
authentication systems [3]. An identification system identifies
a subject without the subject’s claims of her identity. It tries
to match the subject with everyone enrolled in the system
database and gets the best match. On the other hand, an authen-
tication system either rejects or accepts the submitted claim
of identity. In spite of their differences, sometimes the terms
authentication and identification are used interchangeably [3].
Inspired by biometrics, we formulate two new problems:

1) Network Identification. Given a set of networks N =
{N1, N2, ..., Nn}, and a subgraph G sampled from Ni ∈ N
using sampling strategy S, we want to identify G, i.e., the
network Ni from which G is sampled.

2) Network Authentication (or network identity-
authentication). G is claimed to be a subgraph sampled
from a certain network Ni using sampling strategy S. The
authentication system either accepts or rejects this claim.

In both problem settings, there are a few assumptions:
(1) The networks are not isomorphic, i.e., Ni and Nj are
isomorphic =⇒ i = j. If two networks are isomorphic,
they are basically the same graph after anonymization, and
there is no way to distinguish them; and (2) Subgraph G is
not too small to lose its identity. Consider a small subgraph
such as a triad , which can be found in most networks, and
it does not make much sense to verify its identity.

Following the problem formulation, we first aim to build
an identity for a network, similar to how a fingerprint rep-
resents a person. In this paper, we propose two approaches
to build a network identity: I. Embedding-based Identity.
Intuitively, one can represent a network using a feature vector
or its graph embedding. Graph embedding techniques aim to
map a graph into a low-dimensional vector and efficiently
preserve the network structure. Therefore, one can represent
the identity of a network Ni with its embedding, and match
the embedding of subgraph G with the network identities of
others. II. Distribution-based Identity. One limitation of the
embedding-based identity is that it is not unique, as generally
graph embedding approaches do not guarantee uniqueness for
different networks. Therefore, inspired by the design of the
ridge-based representation [4] for fingerprints, we propose
distribution-based identity. The ridge-based representation is
one of the most widely-used representations for fingerprints
and it is based on the common hypothesis that the local ridge



structures (minutiae, e.g. ridge ending and ridge bifurcation)
and their distributions can capture the distinctiveness of fin-
gerprints. It inspires us to, instead of using one embedding,
represent a network identity as the distribution of embedding
values for subgraphs of a network, so that the identity can
preserve uniqueness and subgraph information.
The Present Work. In this paper, we introduce network iden-
tification and authentication with the following contributions:
1. Network Identity. We introduce a network identity and
two identity types: embedding-based identity and distribution-
based identity. We demonstrate the uniqueness of the
distribution-based identity by showing that for real-world
networks the similarity of such identities of various networks
is generally low. We show examples on how the structural
differences in networks are reflected in their identities.
2. Network Identification. With the network identities, we
provide two methods to predict the network from which a
graph is sampled. The supervised learning method shows a
high accuracy (94.7%). We also provide an easier to implement
method which relies on the distances between the embeddings
to the network identity, achieving an 85.5% accuracy.
3. Network Authentication. We propose two methods to solve
the problem: a supervised splitter, which has a low equal error
rate, and a Voronoi splitter, which allows controlling the false
reject rate with an acceptable false accept rate across networks.

The paper is organized as follows. In Section II, we in-
troduce two types of network identities. Our experimental
data is detailed in Section III. We discuss the uniqueness
of identities and partial identity in Section IV. We propose
solutions to network identification in Section V, and network
authentication in Section VI. We conclude in Section VII.

II. NETWORK IDENTITY

To identify a graph, the first step is to build an identity for
each network. Here, we propose two types of identities: (A)
embedding-based identity and (B) distribution-based identity.
A. Embedding-based Identity

Theoretically, any embedding method that can preserve
structural network information and capture the similarity
and/or other relationships between samples (subgraphs) and
the network can be used as an embedding-based identity. Here,
we choose Kronecker points as the embedding method and
show its utility for both network authentication/identification.
Stochastic Kronecker Graphs and Kronecker Points.
Stochastic Kronecker Graphs [5] is a network model for
large-scale graphs based on the Kronecker product ⊗ matrix
operation. Starting from a small probability matrix Θ ∈ Rn×n,
known as the Kronecker initiator matrix, one can get a large
probability matrix P with the kth Kronecker power of Θ, i.e.,
P = Θ⊗k = Θ⊗Θ · · · ⊗Θ︸ ︷︷ ︸

k times

, and P can be used to generate an

adjacency matrix. When modeling a network using Stochastic
Kronecker graphs, we aim to learn Θ which is most likely
to have generated the adjacency matrix A ∈ Rnk×nk

of the
network which we are modeling, i.e., P (A|P) is maximized.
The KRONFIT algorithm can estimate the Kronecker initiator

matrix for a real-world graph in linear time using maximum
likelihood (for details refer to Ref. [5]). If one fits a 2 × 2
Kronecker initiator matrix Θ =

[
a b
c d

]
to an undirected graph,

whose adjacency matrix is symmetric, the learned Kronecker
initiator matrix will be symmetric, too, i.e., b = c. Hence,
one can embed an undirected graph to a point (a, b, d) in the
3D space, and the point is denoted as the Kronecker point
of a graph [6]. Kronecker initiator matrices are probability
matrices, so values a, b and d are all between 0 and 1; hence,
all possible graphs can be embedded in a 1× 1× 1 cube.
Kronecker Points and Graph Structure. One can interpret
the 2×2 initiator

[
a b
b d

]
of an undirected network as a recursive

expansion of two groups of network nodes into subgroups [5].
Values a and d represent the proportion of edges within each
of the groups, and value b represents the proportion of edges
between the two groups. Based on the values order (e.g., a >
b > d or b > a > d), one can obtain whether a network has a
core-periphery, dual-core or random structures [6].
B. Distribution-based Identity

Here, we aim to represent a network identity with the
distribution of embedding values for subgraphs of a network.
We construct the distribution-based identity based on a recent
advancement in network representation:
Network Shapes. Network shapes aim to represent a network
using 3D shapes [6]. The framework to build a network shape
includes three steps: (1) Sample subgraphs from the network
via a sampling method. For a network shape to represent the
distribution of embedding values for subgraphs of the network,
one should sample many subgraphs first. Theoretically, any
sampling method can work. (2) Use a graph embedding
method that can map a graph to a 3D point. The goal is
to use an embedding method that can capture the properties
of the graph within its embeddings, so that the distribution
of embedding values can be closely related to the network
properties. Given such a method, one can represent a network
and its subgraphs obtained from Step 1 as a set of 3D points.
(3) Fit a 3D shape to a set of 3D points obtained in Step 2.
This can be done by fitting various shapes, e.g., spheres/cubes.

With the framework to build a network shape, one can have
her own algorithm to build a concrete shape. Here, we build
a network shape for each network as its distribution-based
identity: (1) We utilizes Random Node Sampling to sample
subgraphs from the network by varying the proportion of
nodes from 0% to 100% with step size s = 10%. For each
proportion, except for 100%, which represents the whole net-
work, we generate t = 20 independently sampled subgraphs;
(2) For each sample (and the whole network), we embed it
to a Kronecker point in the 3D space. In total, we generate
20 × 9 + 1 = 181 Kronecker points for each network; (3)
We fit a 3D shape to all the Kronecker points by computing
their convex hull, which is used as the distribution-based
identity. The time complexity to compute the convex hull is
O( t

s (n + m)), linear in the number of nodes n and edges
m. As the network shape is visualizable in 3D, we can plot
a network identity. Figure 1 shows the identity for YouTube
(detailed in Section III).
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Fig. 1: Distribution-based Identity for YouTube
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III. DATA DESCRIPTION

For our experiments, we use ten real-world networks from
four general network categories: social networks, collaboration
networks, road networks, and biological networks. We include
four social networks: Hyves [7], MySpace [8], Orkut [9], and
YouTube [9]; two collaboration networks: Astro-Ph [9] and
Cond-Mat [9]; two road networks: Road-CA [9] and Road-
PA [9]; and two biological networks: Bio-Grid-Yeast [10] and
Bio-Dmela [10]. The data statistics are in Table I.

IV. UNIQUENESS AND PARTIAL NETWORK IDENTITY
A. Uniqueness of Network Identity

An identity is to be unique. As discussed, graph embedding
generally does not guarantee uniqueness, which is also true
for Kronecker points. Hence, we check whether distribution-
based identity can capture the distinctiveness of networks. We
define the distribution-based identity similarity and investigate
the similarity between identities of different networks.
Distribution-based Identity Similarity. To view how similar
two distribution-based identities are, let us take a look at an
example first. Figure 2 provides two pairs of distribution-
based identities, i.e., YouTube vs. MySpace and Orkut vs.
MySpace. We observe that distribution-based identities (1)
have different volume, and e.g. the identity of MySpace is
larger than that of Orkut; (2) may or may not have overlap.
e.g. YouTube and MySpace have overlap, while Orkut and

TABLE I: Dataset Statistics
Type Network |V | = n |E| = m

Social
Networks

Hyves [7] 1,402,673 2,777,419
MySpace [8] 854,498 5,635,296
Orkut [9] 3,072,441 117,185,083
YouTube [9] 1,134,890 2,987,624

Collaboration
Networks

Astro-Ph [9] 18,772 198,050
Cond-Mat [9] 23,133 93,439

Road
Networks

Road-CA [9] 1,965,206 2,766,607
Road-PA [9] 1,088,092 1,541,898

Biological
Networks

Bio-Dmela [10] 7,393 25,569
Bio-Grid-Yeast [10] 5,870 313,890

TABLE II: Distribution-based Identity Similarity
Type Network Hyves MySpace Orkut YouTube Astro-Ph Cond-Mat Road-CA Road-PA Bio-Dmela Bio-Grid-Yeast

Social
Networks

Hyves 1 0.01 0 0 0 0.03 0 0 0 0
MySpace 0.01 1 0 0.07 0.04 0.03 0 0 0 0
Orkut 0 0 1 0 0 0 0 0 0 0
YouTube 0 0.07 0 1 0.05 0.01 0 0 0 0

Collaboration
Networks

Astro-Ph 0 0.04 0 0.05 1 0.08 0 0 0 0
Cond-Mat 0.03 0.03 0 0.01 0.08 1 0 0 0 0

Road
Networks

Road-CA 0 0 0 0 0 0 1 0.22 0 0
Road-PA 0 0 0 0 0 0 0.22 1 0 0

Biological
Networks

Bio-Dmela 0 0 0 0 0 0 0 0 1 0
Bio-Grid-Yeast 0 0 0 0 0 0 0 0 0 1

MySpace have no overlap. Looking at the Kronecker points
that form the identities, we notice that network identities can
capture network properties. For example, YouTube, MySpace
and Orkut are all social networks, and the majority of their
identities are located in the area a > b > d. When a > b > d
in a Kronecker point, the fitted network exhibits a core-
periphery structure [5], [6], where a represents the strength
of the core of the network and a small d indicates a sparse
periphery. The result is in accordance with that social networks
exhibit a core-periphery structure [5]. Furthermore, we notice
that compared to the other two networks, Orkut network and its
subgraphs have larger values of a and d but smaller values of b.
It indicates that Orkut has a very dense core group, a periphery
group denser than that of others, but the connections between
these two groups are sparse. Based on the observations, we
define the similarity between identities using Jaccard Index:

similarity(A,B) =
volume(IDA ∩ IDB)

volume(IDA ∪ IDB)
, (1)

where volume is the volume of a distribution-based identity,
and IDA and IDB represent identities of networks A and B,
respectively. It is easy to find that volume(IDA ∪ IDB) =
volume(IDA) + volume(IDB) − volume(IDA ∩ IDB), and
volume(IDA ∩ IDB) is easy to calculate as intersection of
convex sets is convex. Table II lists the similarity between
all pairs of the identities. We observe that (1) similarity
between most identities (i.e., shapes) is small, i.e., below 0.1;
(2) networks from different categories in general have very
low similarity. Road networks and biological networks are
not similar to networks from other categories, while social
networks and collaboration networks have some similarity; (3)
within the same category, some similarity exists. In general,
the highest similarity is 0.22, which does not violate the
uniqueness of the network identity across different networks.

B. Partial Distribution-based Network Identity

Theoretically, one can sample all the possible subgraphs
from a network to build a distribution-based identity that
represents a “complete” network identity (similar to how one
can have a high resolution fingerprint scan). However, this
violates our idea for efficiency. Let us assume the network
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identity we have constructed is a practically “complete” net-
work identity. A few questions come up: How sensitive is
a network identity to the number of sample points taken?
Due to the definition of convex hull, if we take a subset of
Kronecker points of the complete network identity to build
a partial network identity, the partial network identity should
also be a subset of the complete network identity. In other
words, the complete network identity can shrink to a partial
network identity. How different are the complete network
identity and a partial one? To answer these questions, we study
the partial network identity by varying the sampling step size
s and the number of independent samples for each proportion
t, and check the similarity between the partial identities and
the complete one. We first fix s = 10% and vary t from
5 to 20, and Figure 3a indicates that the distribution-based
identity is not sensitive to t generally as (1) for the smallest
t = 5, the similarity is over 50%; (2) for most networks,
by sampling 13 to 14 subgraphs for each proportion, we can
create a partial network identity which is 90% similar to the
complete network identity. Next, we fix t = 20 and vary
the step size s from 10% to 50%. Figure 3b shows that the
network identity is more sensitive to s as (1) the similarity
drops quickly with the increase of sampling step size, and (2)
the similarity drops to 0 as the volume turns to 0 when the
identity is degraded to the 2D space. In Section V and VI,
we will discuss the performance of the partial identity for the
network identification/authentication problems.

V. NETWORK IDENTIFICATION

A. Experimental Setup
From each network, we sample many subgraphs represent-

ing graphs G which are to be identified/authenticated. We vary
the sampling proportion from 10% to 99% and sample using
random node sampling. For each proportion, we sample two
subgraphs. Hence, for each network we have 90 × 2 = 180
subgraphs, and for ten networks, we have 180 × 10 = 1, 800
samples to be identified/authenticated.

B. Identification with Embedding-based Identity

To use the embedding-based identity for identification, we
embed both G and all other Ni as Kronecker points. We
consider the identification problem in the following way:
Given the n (=10) identities of Ni’s, we split the whole
embedding space, the 1× 1× 1 cube, into n regions, so that
each region represents the embedding space for the samples
of a certain network. In our work, we propose two splitters.
Voronoi Splitter. It calculates the Euclidean distance between
the Kronecker point of a graph G and that of all other networks
(Ni’s) and reports the closest Ni as the identified network.
This is equivalent to building a Voronoi diagram [11] for the
set of Kronecker points of all Ni’s, where the Voronoi cell for
Nj denotes the set of graphs identified as Nj .
Supervised Splitter. Instead of reporting the closest Ni, for
each sample G, we use the 10 distances (from a sample to
each Ni) as features, and the name of the networks as the
class label, to train a multiclass classification model. In this

TABLE III: Identification Accuracy with Embedding-based Identity
Type Voronoi Supervised Baselines

Splitter Splitter Top Eigenvalues Random
Prediction (1/n)

All Networks 50.7% 93.3% 70.5% 10%
Social Networks 61.4% 97.5% 78.5% 25%
Collaboration Networks 82.8% 87.2% 83.1% 50%
Road Networks 46.7% 78.3% 55.3% 50%
Biological Networks 94.2% 100% 99.7% 50%

experiment, we use 10-fold cross validation, and decision tree,
linear SVM, k-NN, and bagged trees as our classifiers.

We provide two baselines for comparison.
1) Top Eigenvalues. Top eigenvalues have been used to study

graph similarity. We compute the top 5 eigenvalues of each
sample and use as features for classification.

2) Random Prediction. A simple random prediction, so the
accuracy will be 1/n where n is the number of networks.

We evaluate the methods for all networks and within each
network category and report the results in Table III. For super-
vised splitter, we report the result of the best classifier, as the
prediction turns out to be not sensitive to the choice of learning
algorithm. Table III illustrates that (1) both Voronoi splitter
and Supervised Splitter outperform the random prediction; (2)
Voronoi splitter performs not as good as the Top Eigenvalues;
(3) Supervised Splitter performs best and achieves an overall
accuracy of 93.3% ; and (4) the performance on road networks
is not as good as other categories. Comparing both methods,
we find that (1) Voronoi Splitter is simple and does not need
a training process, but it can make mistakes, especially on
smaller samples; (2) Supervised Splitter performs better as
it learns from the distances from the samples to different
networks, making more informed decisions.

C. Identification with Distribution-based Identity

To use the distribution-based identity for identification, we
follow the similar roadmap as the embedding-based method.
The difference is that now the network identity Ni is repre-
sented as a 3D shape. Therefore, we need to define the distance
between a 3D point and a 3D shape. Considering definitions
of the distance between two sets of points and geometrical
properties of a convex polyhedron, we make the following
three Euclidean distances as candidates:
1) dshortest. dshortest is defined based on the shortest distance

between two points from set A and B respectively:

d(A,B) = inf{d(x, y)|x ∈ A, y ∈ B}. (2)

In our case, it refers to the distance from a point to the
closest point on the surface (all the facets) of the shape if
the point is outside the shape, otherwise it is 0.

2) dHausdorff . Hausdorff distance is used to measure how far
two sets A and B are in a metric space:

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}. (3)

It is the largest of the distances from a point in one set
to the closest point in the other and is commonly used in
computer vision research [12]. In our case, dHausdorff refers
to the distance from a point to the farthest boundary point
(i.e., extreme points) of the shape.



TABLE IV: 90th Percentile of the Distance Distribution
Type Network dshortest dextreme dHausdorff

Social Networks

Hyves 0.0149 0.0331 0.5218
MySpace 0.0130 0.0325 0.4399
Orkut 0.0055 0.0161 0.1713
YouTube 0.0138 0.0394 0.4687

Collaboration Networks Astro-Ph 0.0196 0.0572 0.5938
Cond-Mat 0.0189 0.0670 1.0400

Road Networks Road-CA 0.0182 0.0595 0.7866
Road-PA 0.0297 0.0917 0.8327

Biological Networks Bio-Dmela 0.0087 0.0413 0.7175
Bio-Grid-Yeast 0.0040 0.0483 0.2489

TABLE V: Identification Accuracy with Distribution-based Identity
Type Voronoi Splitter Supervised Baselines

dshortest dextreme dhausdorff dweighted Splitter Top
Eigenvalues

Random
Prediction (1/n)

All Networks 78.9% 81.3% 24.7% 85.5% 94.7% 70.5% 10%
Social Networks 93.5% 93.1% 35.3% 94.4% 98.9% 78.5% 25%
Collaboration Networks 86.7% 91.1% 50% 95.3% 98.8% 83.1% 50%
Road Networks 66.4% 56.9% 60% 61.9% 79.7% 55.3% 50%
Biological Networks 100% 100% 57.5% 100% 100% 99.7% 50%

3) dextreme. As all of the boundary points of a network shape
are some of the Kronecker points of samples used for
generating the shape, we also use the distance from a point
to the closest boundary point of the shape.

For each network and the test samples drawn from it, we list
the 90th percentile of the distances distribution in Table IV.
Based on the definitions, we know that dshortest ≤ dextreme ≤
dHausdorff . We observe that most of the Kronecker points of
the subgraphs are around the surface and the boundary of the
network shape of the source network, and for most networks
dHausdorff is large, indicating that different subgraphs of the
same network can be far away from each other.

Next, we use the three distances with the two splitters we
used in the last section for identification, and report the result
in Table V. Compared with the embedding-based identity,
the Voronoi Splitter using the distribution-based identity with
dshortest and dextreme performs significantly better and can
outperform both baselines. We hypothesize that this is due
to the distribution-based identity better capturing subgraph
information. It is not surprising that dHausdorff does not perform
well as it can be explained by our observation and discussion
of the 90th percentile of the distance distribution. Based on
these observations, we consider using a combination of these
three distances for the identification. We use the weighted
average dweighted = w1×dshortest+w2×dextreme+w3×dHausdorff ,
where w1 + w2 + w3 = 1. We do grid search on the feasible
weights w1, w2, w3 and plot the accuracy change in Figure 4a.
The plot shows that the accuracy is high when w1 + w2 ≈ 1
and it drops as w3 increases. The best accuracy is 85.5%
with w1 = 0.71, w2 = 0.29, w3 = 0. Figure 4b provides the
accuracy change when w3 is set to 0, i.e., w1+w2 = 1. We find
the accuracy increases quickly when w1 increases from 0 to 0.7
and drops quickly when w1 is greater than 0.9. Based on the
observations, we set dweighted = 0.71×dextreme+0.29×dextreme,
and in general dweighted performs best among these distances.

For Supervised Splitter, we use dshortest, dextreme and
dHausdorff as features. Each graph G has 3 × 10 = 30
features for all networks and we use the name of the net-
works as the class labels. Table V shows that compared with
the Embedding-based identity, the performance improves and
reaches an overall accuracy rate of 94.7%.
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Identification with Partial Network Identity. As discussed
in Section IV, partial distribution-based network identity can
be constructed similar to the complete network identity by
taking fewer sample subgraphs. We investigate how effective
partial distribution-based identities are in the network identi-
fication task. Based on our previous study on the similarity
of partial network identity to complete network identity, we
speculate that the network identification accuracy is more
sensitive to the change of the sampling step size s. Figure
5a and 5b plot the accuracy change of Voronoi splitter (using
dweighted) and Supervised Splitter respectively with different
s and t configurations. We observe that (1) The Supervised
Splitter is robust to the change of both t and s. The accuracy
does not change with the number of samples t for each
proportion and slightly drops with the increase in sampling
step size s from 94% to 93%. (2) Similar patterns are observed
for Voronoi Splitter. Differently, the accuracy decreases more
and faster with the increase of s, from 85% to 70%.

VI. NETWORK AUTHENTICATION

For network authentication, given the distance from the
identity of G to that of a network Ni, we aim to accept or
reject the claim that G is sampled from Ni.
A. Authentication

Different from network identification, for network authenti-
cation, we need to split the whole embedding space into two
regions: the accept and reject regions. We also propose two
methods: a Voronoi splitter and a supervised splitter.
Voronoi Splitter. For the embedding-based identity, we use
the r-percentile of the distances from the Kronecker points of
samples to that of the source network as a threshold. If the
distance between identities of G and Ni is less than threshold
d, we accept the claim; otherwise, we reject it. An advantage
of this method is that we can control the false reject rate
(FRR) of the authentication system, e.g., in one experiment,



TABLE VI: Authentication with Voronoi Splitter (r = 90)
Type Networks Embedding-based Distribution-based (dshortest)

Accuracy AUC FAR Accuracy AUC FAR

Social Networks

Hyves 34.33% 0.59 71.73% 98.38% 0.95 0.68%
MySpace 39.06% 0.64 67.22% 92.38% 0.91 7.47%
Orkut 34.89% 0.64 72.35% 99.61% 0.98 0.00%
YouTube 41.05% 0.64 64.57% 95.00% 0.82 1.73%

Collaboration Networks Astro-Ph 40.89% 0.62 64.38% 85.17% 0.86 15.00%
Cond-Mat 34.28% 0.54 70.56% 77.94% 0.83 23.40%

Road Networks Road-CA 86.00% 0.80 12.65% 91.89% 0.91 8.09%
Road-PA 72.50% 0.63 25.06% 89.67% 0.86 9.44%

Biological Networks Bio-Dmela 35.83% 0.60 70.19% 99.44% 0.83 0.12%
Bio-Grid-Yeast 44.17% 0.68 62.04% 99.89% 0.99 0%

TABLE VII: Authentication with Supervised Splitter
Classifier Embedding-based Distribution-based

Decision Tree 0.18 (0.08) 0.08 (0.07)
k-NN 0.22 (0.13) 0.16 (0.19)
SVM 0.27 (0.15) 0.08 (0.08)

Note: Mean and standard deviation of the EERs across the networks.

we set r = 90, so FRR is fixed at 10%. It allows one to have
a geometric interpretation of this splitter. That is, we create
a ball centered at the Kronecker point of the network with
a diameter equal to 2 × d. Everything inside the ball (the
boundary included) will be accepted and everything outside
is rejected. For the distribution-based identity, we know from
the distribution of dshortest, dextreme and dHausdorff for samples
of each network that most points are around the surface of
the network shape; hence, we can use the r-percentile of the
distances to the surfaces as the threshold. Similarly, one can
interpret the splitter as creating a band around the surface
of the distribution-based identity with a diameter equal to
2 × d, accepting everything inside the band and rejecting
everything outside. Table VI shows that the method does not
work well with embedding-based identity, but performs well
with distribution-based identity. The FAR varies from 0% to
more than 20%, and for most networks it is below 10%.
Moreover, we vary r when using the distribution-based identity
and find that when r is 90, the FAR and FRR are equal, which
leads to the equal error rate.
Supervised Splitter. For distribution-based identity, we use
dshortest, dextreme and dHausdorff between identities of G and
Ni as three features, and whether G is sampled from Ni as
a binary label. We train a supervised learning classifier with
10-fold cross validation for each network. For the embedding-
based identity, we use the distance between the Kronecker
points of G and Ni as the only feature. We report Equal Error
Rate (EER), at which the false accept rate (FAR) is equal to
the false reject rate (FRR), in Table VII. The results show that
classifiers using both identities have a low EER indicating a
reasonable performance. Comparing the two splitters, one can
see a trade-off between the FAR and the FRR.

Authentication with Partial Network Identity. Next, we
use partial distribution-based network identity for network
authentication. Figures 6a and 6b illustrate the change of the
average FAR and FRR for Supervised Splitter with the partial
network identities with various s and t values. We notice that
both FAR and FRR slowly increase with the sampling step
size s and do not change much with t. FAR is generally lower
than 4% and FRR increases from 20% to 40%. For Voronoi
Splitter, we use the distances to the surfaces and set the
percentile r = 90, so FRR is fixed at 10%. Figure 6c shows the
change in FAR. Similarly, we find the splitter is not sensitive
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Fig. 6: Authentication Performance with Partial Identity

to t. However, the FAR quickly increases with the increase
in sampling step size s. This can be explained by the fact
that with the increase of s, the partial network identity rapidly
shrinks as its similarity to the complete network identity drops
fast, which in turn leads to the 90th percentile d becoming
large. A large threshold d will accept more false samples. In
this case, we need to find the equal error rate for the partial
network identity to strike a balance between FAR and FRR.

VII. CONCLUSIONS

We introduce the network identification and network au-
thentication problems. We propose and compare two types
of network identities, and demonstrate their utility in both
problems. The embedding-based identity is easy to construct,
but the distribution-based identity performs better with sim-
ple methods. For network identification, we propose two
approaches to predict the network from which a graph is
sampled. The supervised learning method is highly accurate,
and a simple method that uses only one Euclidean distance has
a reasonable accuracy. For network authentication, we show
that the supervised method provides a low equal error rate, and
the Voronoi method enables controlling the false reject rate,
while attaining a reasonable false accept rate across networks.
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