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ABSTRACT

Network visualization has played a critical role in graph analysis,
as it not only presents a big picture of a network but also helps
reveal the structural information of a network. The most popular
visual representation of networks is the node-link diagram. How-
ever, visualizing a large network with the node-link diagram can
be challenging due to the difficulty in obtaining an optimal graph
layout. To address this challenge, a recent advancement in network
representation: network shape, allows one to compactly represent a
network and its subgraphswith the distribution of their embeddings.
Inspired by this research, we have designed a web platformWeb-
Shapes that enables researchers and practitioners to visualize their
network data as customized 3D shapes (http://b.link/webshapes).
Furthermore, we provide a case study on real-world networks to
explore the sensitivity of network shapes to different graph sam-
pling, embedding, and fitting methods, and we show examples of
understanding networks through their network shapes.
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1 INTRODUCTION

Networks have become ubiquitous and network analysis has been
used in many research fields, from science (e.g. biological networks
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and computer networks), engineering (e.g. power grids and infras-
tructure networks) to our daily life (e.g. social networks). Among
network analysis techniques, network visualization plays an im-
portant role, as a well-designed network visualization can provide
various insights on the structure of a network. Network visualiza-
tion can assist in understanding the transportation flow of a city
via its metro map [16], or can help identify economic patterns in a
trade network [2]. However, network visualization is challenging,
especially when visualizing large graphs. The most popular visual
representation of graphs is the node-link diagram, which is difficult
to draw for large graphs due to natural clutter, crossing, and over-
drawing issues [15]. To address such challenges, and inspired by
recent advancements in network embedding, we have previously
proposed a framework, network shapes [6], to represent networks
as 3D shapes using their embedding space. In this demonstration,
(1) we develop WebShapes, a web platform that provides users the
possibility to create various network shapes with different methods
and parameters, where users can upload their own networks and
download the shape information for further analysis; (2) we provide
a case study on some networks as examples of network analysis
using network shapes and theWebShapes platform.

The rest of the paper is organized as follows. We first review
related work in Section 2. In Section 3, we detail the network shapes
framework and introduce the WebShapes platform, its functional-
ity, its backend, and the algorithms used. After presenting a network
analysis case study in Section 4, we conclude in Section 5.

2 RELATEDWORK

Our work has links to the following research areas:
Network Visualization. Network visualization research has been
mostly concerned with generating node-link diagrams that are
aesthetically pleasing; hence, the focus has been mostly on graph
layouts, i.e., the placement of the nodes, to increase graph read-
ability [5]. As a result, visulization tools such as Gephi [1], the
Javascript D3 library [3] and Cytoscape [13] are introduced and
widely used. These tools often scale well on small to medium-sized
graphs, however, can hardly visualize larger networks, i.e. with
many thousands or million of nodes.
Network Embedding. Recent network embedding methods, espe-
cially node embedding methods, are utilized for graph visualization.
A well-known example is the spectral drawing which uses the
eigenvectors of the Laplacian matrix to embed nodes, allowing one
to identify an optimal graph drawing layout according to specific
requirements [8]. Another example is LINE [14], used to visualize
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the coauthorship network to aid with clustering authors in the same
field. Different from embedding techniques that enhance node-link
diagrams, network shapes represent a network with a 3D shape,
which approximates the distribution of the embedding space of
the network and its subgraphs. Therefore, technically it combines
graph sampling, network embedding, and shape fitting techniques.
In the next section, we will provide more details on network shapes.
Compared with node-link diagrams, network shapes have limited
clutter and capture various graph structural properties [6].

3 WebShapes

In this section, we present the background of Network Shapes rep-
resentation, and we introduce theWebShapes platform.

3.1 Background on Network Shapes

We first briefly review the network shape framework. A network
shape is built in three simple steps [6]: (1) Samplemany subgraphs
from the network. Theoretically, any samplingmethod canwork. To
sample systematically, we sample by varying proportions of nodes
or edges (e.g., from 0% to 100%) with some fixed step size s . For each
proportion, we sample t independently sampled subgraphs, i.e., a
total of t × 100/s subgraphs for one network; (2) Map the network
and its subgraphs to 3D vectors. To do so, an embedding method
is chosen to provide 3D embedding vectors that can capture the
properties of the network and its subgraphs. After Step 2, we can
represent a network and its subgraphs as a set of 3D points; and (3)
Fit a 3D shape to the set of 3D vectors obtained in Step 2. Fitting can
be done by various shapes, e.g., squares or spheres. The pseudocode
for building network shapes is provided in Algorithm 1. Network

Algorithm 1: Network Shape algorithm
input :an undirected network graph: G(V , E)
output : the network shape of G: ShapeG
parameter :Sample : a graph sampling method to sample

proportion p of nodes (or edges);
s : sampling proportion step size;
t : number of samples for one proportion;
Embed : a graph embedding technique that
can map a network to a 3D point;
Fit : a technique to fit a 3D shape to a set of
3D points;

Embedding_points = { };
for ( p = s; p < 100%; p = p + s ) {

for ( i = 1; i ≤ t ; i = i + 1 ) {
% Sample a subgraph Gp
Gp = Sample(G,p);
% Embed Gp to a 3D point
Embedding_point = Embed(Gp );
Embedding_points.add(Embedding_point);

}

}

% Embed the whole graph G
Embedding_point = Embed(Gp );
Embedding_points.add(Embedding_point);
% Fit a shape to the set of points
ShapeG = Fit(Embedding_points);
return ShapeG ;

Figure 1: WebShapes Interface

shapes have been used to capture network similarity, to classify
and identify networks, and to validate network-based research [7].

3.2 Web Platform

From Section 3.1, we know that one can select various sampling
methods (Step 1), embedding methods (Step 2), and fitting methods
(Step 3) to build a network shape. Hence, we developedWebShapes,
a web platform for users to create customized network shapes for
their need. Using WebShapes, users can upload their network
data or choose an existing dataset, select predefined methods and
parameters (a samplingmethod, an embeddingmethod, and a fitting
method), and can visualize their network data as a 3D shape. Users
can download the information of the network shape for further
analysis. Figure 1 is a screenshot of the platform. Next, we will
briefly introduce the sampling methods, embedding methods, and
fitting methods currently supported byWebShapes.
(1) Three sampling methods:
▶ RandomNode Sampling. Selectsp% of nodes uniformly at random

and outputs the subgraph induced by the selected nodes [10].
▶ Random Edge Sampling. Select p% of edges uniformly at random

and outputs the subgraph induced by the selected edges [10].
▶ Random Walk Sampling. Starting from an initial random node

performs a random walk to sample nodes. At each step, the
random walk restarts from the initial node with probability
(=0.15) [10]. The process continues untilp% of nodes are sampled.

(2) Two embedding methods:
▶ Kronecker Point [6] is a 3D point (a,b,d) that embeds an undi-

rected network, or any of its subgraphs, obtained using Stochas-
tic Kronecker Graphs [9]. Values a, b and d are in range [0, 1]
and are closely related to the network structure. Generally, one
can view a network as two groups of nodes and interpret a and
d as the proportion of edges within each of the groups, and b as
the fraction of edges between the two groups. Hence, we can
split the whole embedding space into three regions based on a, b,
d values: Core-Periphery (a ≥ b ≥ d), Dual-Core (a ≥ d ≥ b), and
Random (b ≥ a ≥ d), and value a represents the core strength [6].

▶ Graph2vec views a graph as a document and the rooted sub-
graphs around each node as words. It extends document em-
bedding neural networks to embed a graph as a vector [12]. For
creating network shapes, we set the output dimension to 3.

(3) Three fitting methods:
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Figure 2: Platform Architecture

▶ Convex Hull yields the smallest convex set that contains all 3D
points given [4]. To save a convex hull, we save its boundary.

▶ Cuboid computes the minimal box (with right angles) around
the 3D points. To save the cuboid, we save the 8 extreme points.

▶ Sphere uses the arithmetic mean of the points as the center and
the longest distance from the points to the center as the radius
to fit a sphere. To save it, we save the center and the radius.
After WebShapes creates a network shape, users can download

the figure and the files including boundary points (Convex Hull),
extreme points (Cuboid) or the center and the radius (Sphere).
Architecture. Here, we briefly introduce the software architecture
of theWeb platform. TheWebShapes platform is composed of three
components: the Web client (i.e., front-end), the Web server and the
back-end server. The Web client is basically the webpages designed
by the bootstrap framework using CSS and Javascript. Users can
use the Web client to interact with the Web server through HTTP
calls. The Web server uses the Linux stack, Apache Web server,
and PHP. When the server receives a request to create a network
shape, it will send a remote call to a strong back-end server. The
back-end server creates a network shape and saves the figure file
and related information of the shape in a directory, which is shared
with the Web server using the Network File System (NFS). Figure 2
illustrates the architecture and the servers configuration.
4 CASE STUDY

Experimental Setup. In the case study, we aim to useWebShapes
to explore the sensitivity of network shapes to various methods
and to derive insights from network shapes. To simplify our case
study, we choose the following as the default methods for creating
a network shape: (1) Sampling: use Random Edge Sampling; set sam-
pling step size 20%, i.e., s = 20%; for each sampling proportion we
generate 5 independently sampled subgraphs, i.e., t = 5. (2) Embed-
ding: use Kronecker Point. (3) Fitting: use Convex Hull. For each step,
when we compare methods and parameters, we maintain the de-
fault configuration of other steps. We use nine real-world networks
from three different categories. Table 1 provides the statistics.
Social Networks: In total, we include three social networks.
(1) Hyves [17]: the most popular social networking site in the

Netherlands with mainly Dutch visitors.
(2) MySpace [18]: a social network having a significant influence

on pop culture and music.
Table 1: Dataset Statistics

Type Network |V | = n |E | =m
Average
Degree

Clustering
Coefficient

Social
Networks

Hyves 1,402,673 2,777,419 3.960 0.0448
MySpace 854,498 5,635,296 13.190 0.0433
YouTube 1,134,890 2,987,624 5.265 0.0808

Collaboration
Networks

Astro-Ph 18,772 198,050 21.100 0.6306
Cond-Mat 23,133 93,439 8.078 0.6334
Hep-Th 9,877 25,973 5.259 0.4714

Road
Networks

Road-CA 1,965,206 2,766,607 2.816 0.0464
Road-PA 1,088,092 1,541,898 2.834 0.0465
Road-TX 1,379,917 1,921,660 2.785 0.0470

Table 2: Shape Volumes for Sampling Methods (×10−4)
Type Network Random Node Random Edge Random Walk

Social
Networks

Hyves 1.39 0.30 0.20
MySpace 0.76 0.09 0.13
YouTube 1.80 0.18 0.39

Collaboration
Networks

Astro-Ph 1.55 4.22 0 (reduced to 2D)
Cond-Mat 9.31 1.22 1.36
Hep-Th 5.11 0.80 0.48

Road
Networks

Road-CA 4.65 0.17 0.57
Road-PA 3.65 3.83 0.26
Road-tx 1.00 1.08 0.24

(3) YouTube [11]: a video-sharing site with a social network.
Collaboration Networks: We have three collaboration networks.
(4) Astro-Ph [11]: Astro physics.
(5) Cond-Mat [11]: Condense matter physics.
(6) Hep-Th [11]: High energy physics theory.
Road Networks: We include three road networks. In road net-
works, nodes are intersections/endpoints and undirected edges are
the roads connecting these intersections/road endpoints.
(7) Road-CA [11]: the road network of California.
(8) Road-PA [11]: the road network of Pennsylvania.
(9) Road-TX [11]: the road network of Texas.
4.1 Analysis

Samplingmethods. Table 2 lists the volume of the network shapes
created using different sampling methods. The result shows that
shapes using Random Node sampling are in general large, while
shapes using Random Walk sampling are generally small, and
shapes using Random Edge sampling vary in volumes for different
networks. As the volume captures the variance of the Kronecker
points of the network and its subgraphs, it indicates that Random
Node sampling generates samples with more variance, while Ran-
dom Walk sampling generates more similar subgraphs. Figure 3
provides the network shapes of Hyves and YouTube obtained using
different sampling methods. It turns out that the three shapes inter-
sect at the Kronecker point of the whole graph, and the Kronecker
points of subgraphs are distributed in different directions. We can
connect the observation to the sampling strategies: (1) The blue
shapes have a much larger a value than others, as the Random
Walk sampling (restarting with some probability from its initial
node) prefers visiting the initial node and its near neighbors, i.e.,
1-hop or 2-hop neighbors, which forms a dense core of the sample;
(2) Though the yellow shapes and the red shapes are both in the
core-periphery region (a ≥ b ≥ d), the yellow shapes are above the
red ones (having greater d value). This can be explained by the fact
that Random Edge sampling has a slight bias towards high degree
nodes and it generates denser samples than Random Node sampling
does. Hence, for subgraphs sampled by Random Edge sampling, the
group of periphery nodes have more internal connections.
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Figure 5: Comparison of Different Fitting Methods

Embedding methods. Figure 4 provides the network shapes of
the nine networks using Kronecker Point and graph2vec respec-
tively. We have colored the shapes based on their network category.
We observe (1) For Kronecker Point, as values a, b and d are all
between 0 and 1, the whole embedding space is a 1× 1× 1 cube; For
graph2vec, the embedding values have no such bound; (2) When us-
ing Kronecker Point, the networks from the same category exhibit
a clustering phenomenon. Moreover, social networks and collabora-
tion networks are close while road networks are relatively far from
others. This observation can be explained by previous results [6],
i.e., most social networks and collaboration networks exhibit the
core-periphery structure and these two categories have overlaps as
they both involve human social behavior, but road networks often
exhibit the dual-core structure. However, when using graph2vec,
networks from different categories seem to form an onion-like
structure: the collaboration networks are in the inside layer, social
networks in the outside layer, and road networks are in the middle.
Fitting methods. Based on the definition of our three fitting meth-
ods, we know that for the same set of points,ConvexHull ⊆Cuboid
⊆ Sphere . Figure 5 provides an example of the network shapes of
Hyves. We list the volume of the shapes using different fitting
methods in Table 3. In general, we find that compared with other
methods, convex hull is very compact, while sphere is very loose.
Cuboid is in the middle, with 3 times volume of convex hull. As the
process of building a network shape involves the graph sampling
step, a good approximation of the embedding space of a network
and its subgraphs should be both accurate and robust to sampling
variance. Considering the trade-off, we believe convex hull and
cuboid perform better in this case.

5 CONCLUSION

In this demonstration, we present WebShapes, a web platform
implementing the network shape framework which allows users
to visualize their network data as 3D shapes with different meth-
ods. We have a case study on networks from different categories.
We demonstrate that the properties of different graph sampling

Table 3: ShapeVolumes forDifferent FittingMethods (×10−4)
Type Network Convex Hull Cuboid Sphere

Social
Networks

Hyves 0.30 1.15 673
MySpace 0.09 0.30 189
YouTube 0.18 0.61 344

Collaboration
Networks

Astro-Ph 4.22 13.00 2398
Cond-Mat 1.22 5.06 2246
Hep-Th 0.80 2.18 1977

Road
Networks

Road-CA 0.17 0.51 158
Road-PA 3.83 13.00 3756
Road-tx 1.08 3.59 2879

methods can be connected to the network shape; with different
embedding methods networks have individual network shapes;
convex hull and cuboid provide a better approximation of the em-
bedding space of a network from the view of the accuracy and
robustness trade-off. As the network shape framework is flexible,
we can integrate more new graph sampling methods, embedding
methods and fitting methods in WebShapes in the future. We also
plan to provide interfaces for users to implement their own graph
sampling, network embedding or fitting methods in the future.
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