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ABSTRACT Failure propagation in power systems, and the possibility of becoming a cascading event,
depend significantly on power system operating conditions. To make informed operating decisions that aim
at preventing cascading failures, it is crucial to know themost probable failures based on operating conditions
that are close to real-time conditions. In this paper, this need is addressed by developing a cascading failure
model that is adaptive to different operating conditions and can quantify the impact of failed grid components
on other components.With a three-step approach, the developedmodel enables predicting potential sequence
of failures in a cascading failure, given system operating conditions. First, the interactions between system
components under various operating conditions are quantified using the data collected offline, from a
simulation-based failure model. Next, given measured line power flows, the most probable interactions
corresponding to the system operating conditions are identified. Finally, these interactions are used to predict
potential sequence of failures with a propagation tree model. The performance of the developed model under
a specific operating condition is evaluated on both IEEE 30-bus and Illinois 200-bus systems, using various
evaluation metrics such as Jaccard coefficient, F1 score, Precision@K , and Kendall’s tau.

INDEX TERMS Cascading failures, power system reliability, propagation of cascades.

I. INTRODUCTION
The IEEE Power and Energy Society Cascading Failure
Working Group (CFWG) has defined a cascading failure as
a sequence of dependent component failures in which the
failure of one or more component leads to the failure of
others, continuing with further subsequent failures [1]. The
ability to predict cascading failures enables more effective
operating decisions, and proper mitigation strategies that
will eventually reduce large-scale blackouts. The unprece-
dented increase in power system uncertainties, due to factors
such as increased penetration of wind and solar genera-
tion and load uncertainties, makes real-time power system
conditions less predictable. This unpredictability demands
a dynamic cascading failure model, which can predict
probable failures based on conditions that are closer to
real-time conditions [2]–[4]. In response to this pressing
need, we propose a new efficient and effective cascading fail-
ure model. The developed model addresses a main drawback
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of the existing models, i.e. applicability to online power grid
operations.

The concept of developing a cascading failure model has
been given significant attention in the power engineering
research, and a variety of cascading failure models have
been developed. Examples include the ORNL-PSerc-Alaska
(OPA) model [5]–[7], Manchester model [8], Hidden fail-
ure model [9], topology-based model [10]–[14], CASCADE
model [15] and the branching process model [16] to simu-
late and analyze the impact of cascading failures on power
systems. The developed failure models can be grouped
into three different categories: (1) topology-based [10]–[14],
(2) DC/AC-based [5]–[9], [17]–[19], and (3) statistical mod-
els [15], [16]. Topology-basedmodels, motivated by the com-
plex network methods [20]–[22], represent power systems as
a large-scale network in which failures spread from a node to
its neighbors. With a proper network representation, various
methods such as centrality measures (e.g., betweenness) can
be used to assess a system’s vulnerability to various failures.
What limits the application of topology-based methods is
the fact that a cascading failure is only treated as a local
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phenomenon, i.e., loss of a node only affects the neighboring
nodes. However, in a real power system, cascading outages
propagate globally [23]: a failure of one component can cause
another failure in a distant location. Additionally, it is demon-
strated in [24] that these topological cascading failure models
could lead to erroneous conclusions regarding vulnerable
system components, which may result in wrong mitigation
strategies. DC/AC-based models such as the OPA model and
the Manchester model address this issue by modeling failures
with a power law distribution. Based on the DC/AC power
flow, the propagation of cascades can be simulated to gain
insights into the physics of cascade propagation in the power
grids [25]. Hence, the information of cascading outages at
each point in time (such as power flows and load losses)
can be used to understand the propagation and impacts of
cascades [19]. These models, however, are computationally
expensive and generate large-scale data [25]. Statistical mod-
els, such as the CASCADE model and Branching process
model, enable fast generation of cascade data, but neglect
power system information such as topology, power flows and
power injections [15], [16]. While these models reveal the
cascade size, the contribution of each component to a cas-
cading failure, a necessary information for online operations,
e.g., generation ramping, cannot be derived. To address the
drawbacks of the statistical models, data-driven statistical
models such as the influence graph model [25], [26] and
the interaction model [27]–[29] are developed to simulate
cascading failures using the interactions among system com-
ponents. An interaction is defined as the probability of one
component’s failure, given the failure of other components.
This failure probability can be estimated from historical cas-
cading failure data or data generated from the DC/AC-based
models. These interaction and influence graph method, how-
ever, do not predict potential failures in near real-time. Recent
studies have used learning-based method to efficiently ana-
lyze cascading failures. Authors in [30] propose to apply rein-
forcement learning to efficiently identify critical fault chains.
In another study [17], Artificial neural network (ANN) is
used to promptly estimate Energy-Not-Supplied in real time.
However, the failure probability of each system component,
an important important information for system protection,
cannot be derived.

To summarize, while current cascading failure models can
analyze cascades, these models cannot provide the potential
propagation of cascades as well as the failure probabilities
of components for system operating conditions that are close
enough to real-time, (1) topology-based models do not cap-
ture the global propagation of cascades; (2) DC/AC-based
models are computationally expensive; (3) statistical mod-
els disregard the differences between system components;
(4) interaction and influence graph models yield the failure
probability but do not consider the effect of different oper-
ating conditions on this probability; and (5) learning-based
method cannot provide the failure probability of each system
component;

To predict potential cascading failures for online operating
conditions, a dynamic cascading failure model that is adap-
tive to changing system operating conditions is developed in
this paper. The model enables fast estimation of the interac-
tions between system components given present transmission
line power flows. Concretely, the model first extracts fail-
ure propagation patterns from large-scale simulated cascade
data, under different grid operating conditions. Next, specific
interactions that correspond to the present transmission line
power flows, can be generated. Finally, these interactions
are used to forecast potential subsequent failures in cascades
under the up-to-date conditions. Having the knowledge of the
potential failures, operators could block the corresponding
relays [31], i.e., stop tripping of the components and still keep
these components in service in power systems, to buy time to
identify appropriate mitigative actions and prevent or reduce
the impact of cascades.

The contributions of this work over the state-of-the-art in
modeling cascading failures can be summarized as:
1) A dynamic cascading failure model, that is adaptive to

changing operating conditions, is developed to accu-
rately, and promptly predict potential cascading failures;

2) Bayesian framework is utilized to estimate power grid
component interactions for a specific operating condi-
tion, resulting in more accurate estimation of the inter-
actions for near real-time operations;

3) A propagation tree method is developed, that enables
predicting the propagation of failures and provides the
failure probability for each system component, and at
each point in time. This information can help initiate
actions on the components with high failure probability,
e.g. relay blocking, so that the propagation of cascades
is prevented. Hence, the operators could have more time
to identify optimal mitigative actions;

4) The developed model can forecast impending failures
in a significantly shorter time than the DC/AC-based
cascading failure models, and thus is more useful for
power system monitoring and control.

The paper is organized as follows: Section II introduces the
dynamic failure model, including how it quantifies dynamic
failure interactions. Section III presents case studies in which
the effectiveness of the proposed model in predicting poten-
tial cascading failures is evaluated. Conclusions are presented
in Section IV.

II. DYNAMIC FAILURE MODEL
Analyzing potential cascades using a simulation-based cas-
cading failure model is time consuming for near real-time
applications. Thus, an alternative statistical model that
(1) extracts the failure propagation patterns from historical or
simulated cascade data (collected offline), and (2) enables fast
prediction of cascades online using such patterns is needed.
Recently developed statistical failure models, namely Qi’s
interaction model [27], [28] and Hines’s influence graph
model [25] are efforts towards addressing this critical need
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in power systems. However, the extracted failure propagation
patterns by these two statistical models do not consider the
impact of various operating conditions on the failure inter-
actions between components. As shown by Ju et al. [29],
the interactions significantly vary under different loading
conditions. To address the aforementioned problem, it has
been suggested in [29] to revise the interaction model with
additional large-scale simulated cascade data, an approach
that is time-consuming and inapplicable to online operations.
This problem will be addressed in this paper.

In this section, a dynamic failure model is developed to
enable (1) fast estimation of failure patterns under online
operating conditions, and (2) to predict the propagation of
cascades, as illustrated in Fig. 1. Offline analysis uses histor-
ical or simulated cascade data under different operating con-
ditions to learn all the failure interactions among components
under different system states. The real-time analysis, using
Phasor Measurement Unit (PMU) measurements, identifies
only those interactions (among all) that apply to real-time
conditions, hence referred to as dynamic interactions. Once
the updated interaction model is generated, a methodology
developed in this work, referred to as the propagation tree
method, is used to predict potential propagation of cascades.
Eventually, this model helps power system operators better
understand the outcomes of the potential failures under the
present system operating condition.

FIGURE 1. Development of a dynamic failure model for predicting
cascades.

A. CASCADE DATA
To estimate the interactions between system components,
large-scale historical cascade data is needed. As cascades
are rare events, real cascade data are not adequate for
this purpose. Therefore, simulated cascade data that contain
(a) different stages of a cascade, and (b) the initial power
loading conditions should be generated as an alternative.
In this study, we consider transmission lines and transform-
ers among power system components, while the method-
ology can be extended to other components. The initiating
event (i.e., generation 1) of each case in the cascade data is
the failure of one or several system components, followed
by subsequent failures (generations) until no more failures
take place, or the system becomes unstable [26]. An exam-
ple of the cascade data is shown in Fig. 2, where the ini-
tial event in generation 1 produces two subsequent failures
(i.e., two children) in generation 2. The failure of these two
components (lines 4 and 5) causes line 2 to fail in generation

FIGURE 2. Example of a cascade propagation.

3 due to overloads. As no more components are outaged after
the outage of line 2, this cascade stops after three generations.
The simulation model (discussed in detail in Section III-A)
utilizes the mitigative control actions of generation ramping
and load shedding to eliminate system limit violations. The
generation ramping is first used to adjust the power flow of
lines while load shedding acts as the last resort. The other pro-
tection strategies such as frequency regulation have not been
considered for generation of scenarios. While this may have
simplified the scenario generation, in future, the same devel-
oped methodology can be applied to a more comprehensive
cascading failure database. In validating the results we have
made sure that all methods compared are consistent in terms
of the available protection/regulation services. As explained
next, upon collection of cascade data and using a Bayesian
framework, the dynamic interactions between components
can be estimated from cascade generations and the initial
loading conditions of components (before failures).

B. ESTIMATING DYNAMIC INTERACTIONS
Conventional interaction model is firstly introduced in [27]
to identify critical system components that have large con-
tribution to cascading failures. The same authors have fur-
ther improved the conventional interaction model in [28]
to use an efficient estimation technique, i.e., Expectation
Maximum (EM) algorithm, to estimate component failure
interactions with less cascade data. While the main idea of
calculating failure interactions is the same, the difference is in
the estimation algorithm. Although conventional interaction
models can capture the propagation patterns from cascade
data, they neglect how component failure interactions vary
with different loading levels of system components. Intu-
itively, a transmission line with a higher loading ratio of

Power Flow
Thermal Capacity is more likely to fail compared to a line with

a lower loading ratio. To capture the effect of line load-
ing on the propagation of cascades, we develop a dynamic
interaction model that incorporates the system loading con-
ditions into the failure interactions. Hence, the model enables
updating the interactions based on the up-to-date power
flows. A dynamic interaction between failures of two com-
ponents can be thought of as a conditional failure probability
P(j | i, rj):

P(j | i, rj) = P(j fails in generation k + 1 | i fails in

generation k, loading ratio of line j), (1)

where P(j |i, rj) is the probability of line j failing, given that
line i has failed and loading ratio for line j is rj. The loading
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ratio (or state) rj for line j is defined as,

rj =
pfj

pf max
j

(2)

where pfj and pf max
j are the apparent power flow and max-

imum apparent power flow capacity of line j. With the
obtained cascade data under different operating conditions,
Bayes’ theorem is used to estimate the conditional probability
P(j | i, rj) [32],

P(j | i, rj) =
P(j, rj | i)
P(rj | i)

(3)

where P(j, rj | i) is the joint probability of the failure of line j
and the state of line j, given line i has failed in the previous
generation. P(rj | i) is the conditional probability of the state
of line j given the failure of line i. In this study, the loading
conditions of system components in a cascade are the states
before the occurrence of the initial failures, as in a statistical
model it is infeasible to predict the changes in the loading
conditions during the propagation of cascades.

To estimate the conditional failure probability P(j, rj | i)
in (3), the methodology introduced byQi et al. [27] is adopted
in this paper. Under a specific loading ratio r , an interaction
matrix A ∈ Rn×n can be obtained, where n is the number of
system components. The interaction matrix summarizes the
interactions between system components using the stages of
cascade data. The elements of A, Aij, represent the number
of times, among all generations of all cascades, component j
fails subsequent to the failure of component i in the previous
generation, when the loading ratio of component j is rj.
The conventional interaction model in [27] assumes that

the failure of component j in a generation is only subsequent
to one component’s outage in the previous generation; and
that component is the one that has led component j to fail the
most among all the cascades. This is due to the difficulty in
identifying the complete cause of subsequent outages in cas-
cade data. After obtaining A, the empirical failure interaction
probability between two failed components can be computed
and recorded in an interaction probability matrix B, with its
elements Bij =

Aij
ni
. Bij is the interaction probability between

lines i and j, i.e. the empirical joint failure probability of
the state of line j and the failure of line j caused by line i,
and ni is the number of times component i fails among all
cascades. The probability matrix B quantifies the interaction
between any two lines during the propagation of cascades
under a specific line loading ratio. Bij can be thought of as
the conditional failure probability P(j, rj | i).

The initial failures in the first generation are often caused
by exogenous events, e.g., a tree falling on a line, while
failures in the subsequent generations are caused by the out-
ages of other system components [33]. Hence, the dynamic
interaction between two components is separated into two
different interactions: (1) initial interaction P0(j | i, ri, rj) and
(2) subsequent interaction P1+(j | i, rj), defined as

P0(j | i, ri, rj) =
P0(j, rj, ri | i)
P0(rj, ri | i)

, (4)

P1+(j | i, rj) =
P1+(j, rj | i)
P1+(rj | i)

, (5)

where 0 and 1+ denote the initial generation and subsequent
generations of cascades, respectively. The initial interaction
is extracted from the outaged components between the first
and second generations, while the subsequent interactions
are obtained from all cascade generations except the first
generation. The benefits achieved by dividing the initial and
subsequent interactions separately will be discussed further
in Section III-C. For simplicity, we use D to denote dynamic
interaction matrices, andD0 andD1+ to denote the initial and
subsequent interaction matrices for the rest of the paper.

It can be observed from (2) that the loading ratio rj is in
range [0, 1]. It is impractical to estimate the failure proba-
bility of line j for any rj, as rj is a continuous value. There-
fore, in this paper, instead of estimating failure probability
P0(j | i, ri, rj) and P1+(j | i, rj) for any loading ratio r ,
based on Bayes’ theorem, we discretize the two interaction
probabilities as [32],

P0(j | i, ri ∈ [
n
b
,
n+ 1
b

), rj ∈ [
m
b
,
m+ 1
b

)), (6)

P1+(j | i, rj ∈ [
m
b
,
m+ 1
b

), (7)

where b is the number of bins used to discretize continuous
variable r and m, n ∈ {0, 1, . . . , b − 1}. For instance, if we
use two bins, i.e., b = 2, there are four initial interac-
tions: P0(j | i, ri ∈ [0, 0.5), rj ∈ [0, 0.5)), P0(j | i, ri ∈
[0, 0.5), rj ∈ [0.5, 1.0)), P0(j | i, ri ∈ [0.5, 1.0), rj ∈ [0, 0.5))
and P0(j | i, ri ∈ [0.5, 1.0), rj ∈ [0.5, 1.0)). Also, there
are two subsequent interactions: P1+(j | i, rj ∈ [0, 0.5)) and
P1+(j | i, rj ∈ [0.5, 1.0)).

C. CASCADE PROPAGATION ANALYSIS
In the previous section, the dynamic interactions between
system components were estimated and a methodology to
incorporate online measurements into these interactions was
introduced. To predict potential cascades online, we develop
a methodology to calculate the failure probability of each
component in each generation of a cascade. In this study,
as the causes of the initial events are exogenous, we only
focus on analyzing the propagation of cascades. Calculation
of failure probabilities is conducted by constructing a Prop-
agation Tree, an example of which is shown in Fig. 3. Each
layer of the tree corresponds to a generation of a cascade, and
each node in a layer represents a component that might fail
in the corresponding generation. An edge (i.e., branch) in a
propagation tree denotes the interaction between two nodes
in two consecutive layers. When the failure probability of a
component in a generation is lower than a threshold ε, it is
assumed that this component would not generate subsequent
child failures. Thus, the corresponding node in the propaga-
tion tree becomes a leaf node, such as node 3 in generations
3 and 5 in Fig. 3. The steps to construct a propagation tree
are:
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FIGURE 3. An example of a propagation tree.

Step 1 Given the online operating conditions of each system
component, rq, q ∈ {1, 2, . . . , n}, where n is the
total number of system components, the correspond-
ing initial Pcurrent0 and subsequent Pcurrent1+ interactions
in (6) and (7) are found among the interactions stud-
ied offline;

Step 2 Given the initial failed components, column vector
V1 is constructed to represent the failure probability
of each component at the beginning of a cascade.
V1(i) = 1 denotes component i is part of the initial
failures while V1(i) = 0 denotes component i did
not fail at the beginning of a cascade. Define V ′1 =
e − V1 to describe the survival probability of each
component where e is an all-ones column vector.

Step 3 Set G = 2 (second generation). Given the initial
interaction Pcurrent0 , the failure probability of each
component in the second generation is calculated:

V2(i) = 1−
N1∏
j=1

(1− V1(j)Pcurrent0 (i | j)), (8)

V ′2(i) = V ′1(i)(1− V2(i)), (9)

where V2 and V ′2 store the failure and survival prob-
ability of each component in the second generation,
respectively. N1 is the total number of initially failed
components in the first generation. Following past
literature, we assume that component failure prob-
ability follows a geometric distribution [34]. If no
element in V2 is larger than a user defined ε, go to
Step 6; otherwise, go to Step 4.

Step 4 Set G = G + 1. Using the subsequent interaction
Pcurrent1+ , the failure probability of each component in
the Gth generation is calculated. Note that a system
component may be predicted as a potential failure
in more than one generation of the propagation tree,
e.g., component 3 is predicted to fail in genera-
tions 2, 3 and 5 in Fig. 3. As a component cannot
fail more than once in a cascade, the probability that

FIGURE 4. An illustration of the subtree of component 3 in generation 5.

a component only fails in generationG and not fail in
any previous generations is calculated by extracting
a subtree from the propagation tree for that com-
ponent. In this subtree, the component in question
only appears in generation G and the potential occur-
rences of this component in any previous generations
are removed. For example, for the propagation tree
in Fig. 3, to calculate the failure probability of com-
ponent 3 in generation 5, a subtree is generated and
shown in Fig. 4. It can be observed that the compo-
nent 3 only occurs in generation 5 and the potential
failures of component 3 in generations 2 and 3 are
removed in the subtree. Given the subtree for each
component in generation G, its failure probability in
generation G is:

VG(i) = 1−

N sub
G−1∏
j=1

(1− V sub
G−1(j)P

current
1+ (i | j)), (10)

V ′G(i) = V ′G−1(i)(1− VG(i)), (11)

where VG records the component failure probability
at generation G, while V ′G stores the survival proba-
bility of each component until generation G, i.e., the
probability that a component does not fail in the first
G generations. V sub

G−1(j) is the failure probability of
component j in generationG−1 of the subtree. N sub

G−1
is the total number of parent nodes of component i in
generation G− 1 of the constructed subtree.

Step 5 If no element in VG is larger than ε, go to Step 6;
otherwise, return to Step 4.

Step 6 Construction of the propagation tree is stopped.
Once all components stop generating child failures,

the propagation tree for a given operating condition is con-
structed. The failure probability of a component in a cascade
can be calculated as,

Vfinal(i) = 1−
NG∏
k=1

(1− Vk(i)) (12)
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where Vfinal(i) is the probability of component i fails in this
this cascade. NG is the total number of generations after
constructing the propagation tree. It can be observed in the
construction steps of the propagation tree that the developed
method enables calculating the failure probability of a com-
ponent in different generations, while the interaction model
in [27], its improvement in [28] and the event tree model
cannot provide this information. This is due to the fact that the
interaction model ignores the component failure uncertainty
that a component might fail in different generations with
different probabilities and only allows components to fail in a
single generation. The propagation tree can be used to analyze
cascades and identify the most vulnerable areas of a system to
cascading failures in different generations. Notice that, when
the topology changes due to maintenance, this method can
still be applied by updating the initial failure probability of
other components that are in service using (8).

D. CASCADE DATA SUFFICIENCY
So far, the dynamic interaction model assumed that cas-
cade data is sufficiently available for constructing the initial
and subsequent interaction matrices and ensuring accurate
cascade prediction. Intuitively, more cascade data tends to
provide more interaction information between components.
However, the question of ‘‘how much data is sufficient for
creating interaction matrices?’’ is yet to be answered.

Recent research studies [27]–[29] have introduced two
criteria to assess the adequacy of cascade data for con-
structing conventional interaction models. It is shown that
with an increase in the number of the cascades in the data,
the total number of different interactions between compo-
nents, i.e., the number of non-zeros in the interactionmatrixB
increases. However, the total number of different interactions
does not significantly change after the number of cascades
reaches a threshold. Thus, to obtain most of the interactions
between components, the change in the number of non-zeros
is used to determine the number of cascades required for
building the interaction matrix B. Another lower bound for
the number of required cascade data is the number of cascades
that can be used to obtain the dominant interactions. By com-
paring the mismatch of propagation capacity, i.e., the aver-
age number of failures in one cascade, between the original
cascades and the predicted cascades that are from interaction
model, this lower bound of the number of cascades can be
determined. The objective of the conventional interaction
model is to identify key interactions that largely contribute
to the propagation of cascades, while the dynamic interaction
model developed in this work is to predict the failure prob-
ability of each component. In other words, the entries of the
interaction matrix are more important to the dynamic inter-
action model than the number of non-zeros when deciding
on data adequacy for constructing the dynamic interaction
model.

The increased number of cascades will change the entries
of the dynamic interactions but the change would be limited
when the total number of cascades is above a threshold.

Here, Frobenius norm is chosen to measure the change in
the entries of the interaction matrices and to determine the
required number of cascades for building the dynamic inter-
action model,

E i =

∥∥Di
− Di−1

∥∥
F

Nnz

=

√∑Nbranch
p=1

∑Nbranch
q=1

∣∣∣d ipq − d i−1pq

∣∣∣2
Nnz

, i = 2, . . . ,Ntotal

(13)

where Di and Di−1 are the dynamic interaction matrices, and
i is the number of cascades.Nnz is the number of non-zero ele-
ments inDi. ‖·‖F denotes the Frobenius norm,E i indicates the
change of the dynamic interaction matrix when the number
of cascades is i, d ipq and d

i−1
pq are the elements in the pth row

and qth column of matrix Di and Di−1, respectively, Nbranch
is the number of components, and Ntotal is the total number
of cascades.

III. CASE STUDIES
The developed dynamic interaction model is evaluated on
two test systems. The first test system is the widely used
IEEE 30-bus system, with 30 buses and 41 transmission
lines, representing a portion of the American Electric Power
system [35]. The second system is a synthetic electric grid
case, i.e. Illinois 200-bus system, that is statistically and
functionally similar to real-world electric grids [36]. This
system has a total of 200 buses and 245 lines. The diagrams
of these two test systems are given in Fig. 5 and Fig. 6,
respectively. The cascade data is generated from simulations
using AC-OPA [7] model. To evaluate the performance of the
dynamic interaction model, different performance analysis
metrics are used. Also, the developed dynamic interaction
model is compared with four baselines: Hines’ influence
model [25], Qi’s interaction model [27], Qi’s EM model [28]
and dynamic interaction model without differentiating ini-
tial and subsequent failures. The goal is to demonstrate the
effectiveness of the developed dynamic interaction model in
predicting cascades, and highlight its contributions over the
existing methodologies.

A. GENERATING CASCADE DATA
To generate cascade data, a simulation based model,
i.e. AC OPA model is used. This model has been previously
validated in [7], [37]. AC OPAmodel uses AC optimal power
flow (AC OPF) to solve the power flow and determine the
operator actions such as load shedding. The detailed steps
followed for the AC OPA model used in this paper are as
follows:
Step 1 Each load is initialized by multiplying a random

number that is uniformly distributed in [2− γ, γ, ]
to the nominal value of the load, where γ is the load
variability and is set to 1.67. Notice that all loads
vary asynchronously in this study. The choice for
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FIGURE 5. Diagram of IEEE 30-bus system that has 30 buses and
41 transmission lines. Red nodes represent generator buses and blue
nodes represent load buses.

FIGURE 6. Diagram of Illinois 200-bus system that has 200 buses and
245 transmission lines. Red nodes represent generator buses and blue
nodes represent load buses.

the load variability γ is inspired by [27], [28] to
represent load variations throughout a year. The load
and generation profiles of the two test systems can be
obtained from [35] and [38];

Step 2 Line power flows are initialized using ACOPF. If AC
OPF diverges, loads are shed until a solution is
reached. If no solutions are obtained, back to step 1;

Step 3 An initial event is set. It is assumed that each system
component fails independently with a failure proba-
bility of 0.001, as the initial events are rare in prac-
tice. Notice that the initial failure probability can be
further improved by analyzing the historical failure
data;

Step 4 All the islands within the system are identified. For
each island, the supply and demand are balanced by
ramping up/down generation or shedding load. After
the generation and load in all islands are re-balanced,

the AC OPF is calculated. If AC OPF diverges, loads
are shed until a solution is reached;

Step 5 If any line flows violate their limits, the overloaded
lines are tripped and Step 4 is repeated; otherwise,
the simulation will stop.

B. DETERMINING CASCADE DATA ADEQUACY
With the aforementioned simulation-based cascade model,
a total of 160,000 and 240,000 cascades are generated for
the IEEE 30-bus and Illinois 200-bus systems, respectively.
By gradually increasing the number of cascades, the changes
in the dynamic interaction matrices, in particular, initial inter-
action and subsequent interactions, for both test cases are
illustrated in Fig. 7 and Fig. 8. Setting the number of bins as
two, four different initial interaction matrices that correspond
to P(j|i, ri ∈ [0, 0.5), rj ∈ [0, 0.5)), P(j|i, ri ∈ [0, 0.5), rj ∈
[0.5, 1.0)), P(j|i, ri ∈ [0.5, 1.0), rj ∈ [0, 0.5)), P(j|i, ri ∈
[0.5, 1.0), rj ∈ [0.5, 1.0)), and two different subsequent inter-
action matrices P(j|i, rj ∈ [0, 0.5)) and P(j|i, rj ∈ [0.5, 1.0))
are extracted from the cascade data. It can be observed that
the change in dynamic interaction matrices for both the initial
and subsequent interactions becomes smaller with an increase
in the number of cascades, particularly when the number of
cascades is small. In other words, more cascade data provides
more interaction information. However, when the number of
cascades is above a threshold, the Frobenious norm E is close
to zero, which means interactions do not change with more
cascade data. The change in the Frobenious norm, determines
the number of cascade data required for the IEEE 30-bus and
Illinois 200-bus systems to be approximately 140,000 and
200,000, respectively.

C. PERFORMANCE ANALYSIS
Once the minimum number of required cascade data is deter-
mined, the initial and subsequent interactions can be gener-
ated and used to predict potential cascades. If a component
failure probability in a generation, calculated by the propa-
gation tree, is larger than a threshold ε, this component is
regarded as a potential failure in the corresponding generation
of a cascade. To evaluate the prediction performance of the
developed dynamic interaction model, a set of metrics are
used, as discussed later. The performance of the developed
method is analyzed in terms of (1) how accurately all failures
in a cascade, referred to as total failures, are predicted (not
considering which generation each failure happened), and
(2) how accurately failures in each generation of a cascade,
referred to as temporal failures, are predicted.

Prediction Evaluation for Total Failures is performed
using three metrics: Jaccard coefficient, F1 score, and Pre-
cision@K.
(1) Jaccard coefficient is used to measure the similarity

between two sets ATruth and APredicted [39]:

J (ATruth,APredicted) =
|ATruth ∩ APredicted|
|ATruth ∪ APredicted|

, (14)

VOLUME 8, 2020 61747



R. Ma et al.: Probabilistic Cascading Failure Model for Dynamic Operating Conditions

FIGURE 7. Variations of the Frobenius norm calculated for the dynamic
interaction matrix for IEEE 30-bus system.

where ATruth and APredicted are the set of truly failed and
predicted failed components in a cascade, respectively.
ATruth can be obtained from the original cascade data,
while Apredicted is determined by comparing the total
failure probability of each component, i.e., Vfinal in (12),
with a threshold ε. If the total failure probability of a
component is above ε, this component is regarded as a
potential failure in a cascade. For temporal failures,ATruth
can be obtained from the original data in each generation
of a cascade, while Apredicted is determined by comparing
the failure probability of each component in a generation,
VG in (10), with a threshold ε.

(2) F1 score is a weighted average of the Precision and
Recall, which measures the prediction accuracy of the
dynamic interaction model [40]. Here, Precision is the
fraction of potential failures that indeed fail in a cascade,
while Recall is the fraction of failed components that are
successfully predicted as impending failures [41].

Precision =
|ATruth ∩ APredicted|
|APredicted|

, (15)

FIGURE 8. Variations of the Frobenius norm calculated for the dynamic
interaction matrix for Illinois 200-bus system.

Recall =
|ATruth ∩ APredicted|

|ATruth|
, (16)

F1 score = 2 ·
Precision · Recall
Precision+ Recall

. (17)

(3) Precision@K (Precision at K), inspired by [42], is the
fraction of components that have failed among the top K
predicted potential failures:

Precision@K =

∣∣∣ATruth ∩ AKPredict, Sort∣∣∣
K

, (18)

whereK is user-defined, and set to the number of compo-
nents that indeed fail in a cascade. AKPredict, Sort is the top
K predicted failures in the sorted set of potential failures
APredict, Sort, where potential failures are sorted based on
their corresponding failure probabilities.

Prediction Evaluation for Temporal Failures is per-
formed using Jaccard coefficient, F1 score, and two other
metrics to assess failure prediction accuracy in each cascade
generation:
(1) Kendall’s Tau (τ ) is a correlation coefficient used to

measure the association between two ranking methods,
where τ is in the range of [−1, 1] [43]. τ = 1 shows

61748 VOLUME 8, 2020



R. Ma et al.: Probabilistic Cascading Failure Model for Dynamic Operating Conditions

a complete agreement, and τ = −1 shows a complete
disagreement between the two ranking methods. τ = 0
means the two ranking methods are independent [43].
Given two rankings (orders) A : a1, . . . , an and B :
b1, . . . , bn, consider pair (ai, bi) and (aj, bj). If ai > aj
and bi > bj or ai < aj and bi < bj, the pair is concordant;
If ai > aj and bi < bj or ai < aj and bi > bj, the pair is
discordant; and If ai = aj or bi = bj, the pair is a tie [44].
τ is formulated as,

τ =
nc − nd√

[nall −
∑t

i=1
ti(ti−1)

2 ] · [nall −
∑u

j=1
uj(uj−1)

2 ]
,

nall =
n(n− 1)

2
, (19)

where nc and nd are the number of concordant and dis-
cordant pairs, respectively. n is the number of elements
in the ranking orders A and B, t and u are the number
of different group of ties in rank A and B, and ti and uj
are the number of elements in the ith and jth group of ties
in A and B, respectively. For example, given the ranking
order A that has seven elements (n = 7) as 1 2 2 3 4 4 4,
the number of different group of ties are two (t = 2) since
the rankings 2 and 4 appear more than once, that is, two
elements are ranked with the same order 2 (t1 = 2) and
three elements are ranked with the order 4 (t2 = 3).
As components in a generation of a cascade either fail or
survive, they cannot be ranked; hence, a heuristic ranking
method is used for components that have indeed failed
at each generation. In this heuristic method, the rank
for failed and survived components are set to 1 and 2,
respectively. For those components that are predicted to
fail, the rank is assigned based on the corresponding
failure probabilities. Hence, Kendall’s Tau can be used
to evaluate the similarity between the predicted and the
real failed components in each generation of a cascade.

(2) The average precision of the top N generations is also
assessed in this paper. Incorrectly predicted failures in
one generation of a cascade will lead to wrong predic-
tions in all subsequent generations. As the initial cascade
generations are more influential in determining operator
actions, the average precision of the top N generations,
AvgPrecisionN , is used to evaluate the performance of the
developed failure prediction methodology.

AvgPrecisionN =

∑N
i=1 Precisioni

N
(20)

where Precisioni is the precision for the ith generation.
Since most cascades stop within 10 generations, N is set
to 10.

In addition to the previously collected cascade data for
the IEEE 30-bus and the Illinois 200-bus systems, another
50,000 cascades for each test system is generated using the
same cascade data generation process to validate the perfor-
mance of the developed interaction model by using holdout
cross validation method [45]. A threshold ε, is used to iden-
tify the potential failures in each generation of a cascade.

FIGURE 9. F1 score of prediction accuracy of total failures in IEEE 30-bus
and Illinois systems with different ε ∈ [0 1].

This threshold is varied from zero to one to find the optimal
ε that yields the highest prediction accuracy. The F1 score of
the prediction of total failures with different ε in IEEE 30-bus
and Illinois 200-bus systems are given in Fig. 9. Here, these
values are ε = 0.18 for the IEEE 30-bus system, and ε = 0.15
for the Illinois 200-bus system. We found that the prediction
accuracy of the developed interaction model increases with
the number of bins, b, that are used to discretize dynamic
interactions. However, the prediction accuracy did not change
as the number of bins increased beyond a certain value.
By looking at the prediction accuracy while varying the
numbers of bins from 1 to 100, which is given in Fig. 10,
we have set the number of bins for the IEEE 30-bus and
Illinois 200-bus systems to 35 and 40, respectively.

FIGURE 10. F1 score of prediction accuracy of total failures in IEEE 30-bus
and Illinois 200-bus systems with different bins (from 1 to 100).

The prediction performance based on both total failures
and temporal failures for two test systems are provided
in Table 1 and Table 2. It can be observed that, in most
cases, the developed dynamic interaction model significantly
outperforms the other four baselines in terms of prediction
accuracy for both total failures and temporal failures. The
performance results of the developed dynamic interaction
model with and without separating the interactions also show
that dividing the interactions into initial and subsequent inter-
actions has significant improvement in predicting the two
different type of failures. Specifically, for the total failures,
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TABLE 1. Performance analysis of the proposed dynamic interaction
model for the IEEE 30-bus system.

TABLE 2. Performance analysis of the proposed dynamic interaction
model for the Illinois 200-bus system.

the Jaccard coefficient of the dynamic interaction model is
0.8159 and 0.7988 for the IEEE 30-bus, and Illinois 200-bus
systems, which means the similarity between the predicated
failed components and real failed components is 81.59% and
79.88%, respectively. The F1 score (a weighted average for
prediction accuracy) for the two test systems reaches 84.77%
and 80.58%, higher than that of the other four baselines.
Similarly, the precision@K values show that 89.72% and
85.26% of the topK predicted failures are correctly predicted,
where K is equivalent to the number of components that have
indeed failed. Low precision means more lines are incor-
rectly recognized as risky lines, which would cause unnec-
essary actions such as relay blocking on those lines. These
unnecessary actions are costly and may decrease the system
reliability. It can be observed from the performance com-
parison results that the prediction precision is significantly
improved by using the developed dynamic interaction model.
In addition to the prediction performance of the total failures,
the prediction for the temporal failures also reaches a high
accuracy, although the accuracy is slightly decreased. The
reason for this reduction in accuracy is that awrong prediction
of a failed component in a generation would cause wrong
prediction of failed components in all subsequent generations
of a cascade, which can be thought of as a prediction noise.
With the propagation of cascades, the effect of this noise is
amplified and results in reduction in the prediction accuracy.
For a better illustration of the prediction accuracy in each
generation of a cascade, and to decrease the effect of the
noise, the average precision of the top N generations for the
two test systems are given in Fig. 11. We observe that the
prediction accuracy decreases with the increase in the number
of top N generations. Compared to the other four baselines,
the developed interaction model provides a more precise pre-
diction of the failed components in a generation, especially
for the top four generations. The values for Jaccard coefficient

and Kendall’s Tau also show a high degree of similarity and
strong agreement between the predicted outages and the real
outages in each generation.

The computation time of the dynamic interaction model is
also reported here to assess its suitability in near real-time.
The time required to online analysis of 1,000 cascades for
IEEE 30-bus and Illinois 200-bus systems using the dynamic
interaction model are 8.1043 s and 250.2494 s, respectively,
on a computer with an i7-7700 CPU, 4.2GHz core. Compared
to the time it takes to analyze the same number of cascades
using AC cascading failure model, which is 300.7678 s for
the IEEE 30-bus system and 1371.4187 s for the Illinois
200-bus system, the time efficiency of the developed model
is a clear improvement. Although the OPF approach in AC
cascading failure model is fast if pre-calculated solutions of
some specific operation conditions are stored, it is impractical
to calculate and store solutions for all possible system oper-
ating conditions due to the numerous uncertainties present
in today’s power grids, particularly from renewable energy
resources. It can be observed that the computation time would
be increased with the size of the system. In terms of the
type of the system, a well-connected network will resist more
cascade propagation, as it is more robust. Hence, the number
of generations in a cascade in a well-connected power system
would be less than other loosely connected systems. As a con-
sequence, the former would have shorter computation time
using propagation tree due to the less number of cascade gen-
erations that need to be estimated. Furthermore, in order to
make the developed dynamic interaction model more suitable
for online applications, several strategies are proposed here
to speed up the computation time: 1) Instead of evaluating all
N − 1− 1 and N − 2 contingencies, it is suggested to apply
the dynamic interaction on the selected credible contingen-
cies that can be obtained from various contingency selection
methods [46]–[50]; 2) Only forecast the propagation of the
firstKpredict) generations of a cascade as the initial progress of
the failure propagation is more important to system operators
to identify potential failures; 3) High performance computing
can further reduce the computation time.

D. POTENTIAL FAILURE IDENTIFICATION
Analyzing the performance of different statistical cascad-
ing failure models has shown that the developed dynamic
interaction model provides more accurate prediction of the
total and temporal failures in each generation of a cascade.
With the dynamic interaction model, one is able to identify
components that have high failure probability in the sub-
sequent failures, particularly at the beginning of a cascade,
where the progress of the failures is slow [51]. Therefore,
operators can take targeted control actions that reduce the
loading ratio of the identified potential components or disable
the corresponding relays to stop the tripping of these com-
ponents. The examples of cascade prediction for the IEEE
30-bus and Illinois 200-bus systems are illustrated in Fig. 12
and Fig. 13. The real sequence of the two cascades that
are obtained from the AC-OPA model is given in Table 3.
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FIGURE 11. Average precision with top N number of generations.

TABLE 3. Example of two real sequence of failures in two test systems.

It can be observed in Fig. 12 that, given the initial failures in
generation one, i.e. lines 12 and 36 are out in IEEE 30-bus
system, the obtained failure probabilities of lines 10, 29,
30, 31, 33 and 35 from the dynamic interaction model are
close to one, which are in accordance with the real failed
components in generation 2 in Table 3. It is also seen that
the real failed components, i.e. components 16, 28, 34, 40 and
41, have high failure probability in generation three in Fig. 12.
However, line 32 has high failure probability in the generation
3 in Fig. 12 while it does not fail in the real case. Further
investigation shows that the power flow of line 32 is close
to its limit. Comparing the real failure sequence in Illinois
200-bus system with Fig. 13, the same observation is made:
the dynamic interaction model effectively identifies compo-
nents that are prone to failure in each generation. The only
exception is the wrongly predicted (False positive) failure of
line 207 in the second generation. Although line 207 does
not get overloaded, it is found that the power flow of line
207 is close to its thermal rating. It can be observed from
the illustration results that the dynamic interaction model

FIGURE 12. Potential failures in each generation of a cascade in IEEE
30-bus system.

FIGURE 13. Potential failures in each generation of a cascade in Illinois
200-bus system.

provides useful insights into the potential failures in each
generation of a cascade, that in turn can be used by the system
operators to take effective actions that prevent the propagation
of cascades, in a timely manner.

IV. CONCLUSION
This paper presents the dynamic cascading failure model,
which facilitates prediction of impending cascading failures
under a specific power system operating condition. The con-
ventional statistical cascading failure models only capture the

VOLUME 8, 2020 61751



R. Ma et al.: Probabilistic Cascading Failure Model for Dynamic Operating Conditions

general propagation patterns of cascades. On the contrary,
the dynamic failure model incorporates system operating
conditions into the component failure interactions using a
Bayesian approach, and thus enables identifying component
failure interactions that correspond to the latest available
line power flows. By analyzing simulated or historical cas-
cade data, the interactions between system components are
estimated offline, and used in online operations to calculate
the failure probability of each system component using the
introduced propagation treemodel. The prediction efficiency
of the developed dynamic failure model is evaluated by var-
ious metrics, showing a significant improvement over four
other state-of-the-art methods in predicting total and temporal
failures of a cascade. When an unexpected power system
failure occurs, the system operators can promptly identify
the most probable component failures with the developed
failure model. Hence, proper actions can be taken to prevent
further loss of system components. Furthermore, the research
in this study can be extended to help determine proper failure
mitigation strategies such as protective relay blocking.

Although our method outperforms the traditional
simulation-based methods and conventional interaction mod-
els in terms of time and accuracy, for larger utility systems,
it may need to be further enhanced in terms of compu-
tation time, as a sufficiently large amount of scenarios,
in the order of millions, need to be simulated. For future
study, we aim to use imprecise probability method and
Expectation–maximization (EM) to reduce the number of
cascade data required to construct the dynamic failure model,
such that the developed method can becomemore suitable for
larger utility systems.
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